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A B S T R A C T

Soil organic matter is central to the soil health framework. Therefore, reliable indicators of changes in soil
organic matter are essential to inform land management decisions. Permanganate oxidizable carbon (POXC), an
emerging soil health indicator, has shown promise for being sensitive to soil management. However, strict
standardization is required for widespread implementation in research and commercial contexts. Here, we used
36 soils—three from each of the 12 USDA soil orders—to determine the effects of sieve size and soil mass of
analysis on POXC results. Using replicated measurements across 12 labs in the US and the EU (n = 7951
samples), we quantified the relative importance of 1) variation between labs, 2) variation within labs, 3) effect
soil mass, and 4) effect of soil sieve size on the repeatability of POXC. We found a wide range of overall
variability in POXC values across labs (0.03 to 171.8%; mean = 13.4%), and much of this variability was
attributable to within-lab variation (median = 6.5%) independently of soil mass or sieve size. Greater soil mass
(2.5 g) decreased absolute POXC values by a mean of 177 mg kg−1 soil and decreased analytical variability by
6.5%. For soils with organic carbon (SOC) >10%, greater soil mass (2.5 g) resulted in more frequent POXC
values above the limit of detection whereas the lower soil mass (0.75 g) resulted in POXC values below the limit
of detection for SOC contents <5%. A finer sieve size increased absolute values of POXC by 124 mg kg−1 while
decreasing the analytical variability by 1.8%. In general, soils with greater SOC contents had lower analytical
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variability. These results point to potential standardizations of the POXC protocol that can decrease the varia-
bility of the metric. We recommend that the POXC protocol be standardized to use 2.5 g for soils <10% SOC.
Sieve size was a relatively small contributor to analytical variability and therefore we recommend that this
decision be tailored to the study purpose. Tradeoffs associated with these standardizations can be mitigated,
ultimately providing guidance on how to standardize POXC for routine analysis.

1. Introduction

Soil organic matter is a vital component of ecosystem functioning
(Schmidt et al., 2011), as well as crop production (Oldfield et al., 2019;
Sanderman et al., 2017). For decades, the characterization of organic
matter in soils has been predominantly described through chemical
extractions or fractionations (Lehmann and Kleber, 2015). Increasingly,
this paradigm is being left behind in favor of a model that integrates
chemical composition, physical accessibility, and biological activity to
describe organic matter dynamics (Blankinship et al., 2018; Dungait
et al., 2012; Lehmann et al., 2008).

The soil health framework emphasizes the degree to which dynamic
properties of a soil can be optimized for multifunctionality. While there
are intrinsic properties of each soil, the chemical, physical, and biolo-
gical components of soil organic matter form the core of soil health (Lal,
2016). Soil health seeks to unify these previously disparate components
of soil into a cohesive framework for implementation in agroecosystems
(Kibblewhite et al., 2008). To aid in the implementation of this fra-
mework, a novel set of metrics are being developed with usability by
land managers as one of the central goals (Doran and Zeiss, 2000). As

these metrics undergo development, vetting, and calibration, an
emerging soil health indicator is the fraction of carbon (C) that is oxi-
dized by potassium permanganate (KMnO4), which we will refer to here
as permanganate oxidizable C (POXC) (Culman et al., 2012; Moebius-
Clune et al., 2017). While POXC is a chemically-defined fraction of soil
C, it is often thought or proposed to be reflective of a biologically active
pool (Moebius-Clune et al., 2017; NRCS, 2019) and has been shown to
be related to microbial community composition (Ramírez et al., 2019).
Recent work has also shown that POXC is positively related to ag-
gregate stability (Fine et al., 2017; Wade et al., 2019) and inversely
related to dispersible clays (Jensen et al., 2019), suggesting a potential
physical component of this measurement as well. This interrelatedness
of POXC to multiple components of soil health—as well its sensitivity to
changes in management, potential for high throughput, and relatively
low equipment costs—have made it an attractive metric for soil health
assessments (Bongiorno et al., 2019). One unique aspect of the soil
health framework is the focus on indicator usability and interpret-
ability. Soil health indicators must provide information that is both
reliable and actionable for land managers in their decision making
process.

Table 1
Classification and characteristics of soils used in multilab comparison of permanganate oxidizable C (POXC). Soils are A horizons for mineral soils and O horizons for
Histosols and Gelisols. Soil series information, including USDA classification and land use is available for each soil in Table S1.

Soil ID USDA Order SOC (%) C:N pH Clay (g kg−1) Sand (g kg−1) CECa (meq 100 g−1) Location

1 Oxisol 1.7 12.7 5.0 716 79 9.1 Kisumu, Kenya
2 Oxisol 0.6 9.7 4.8 480 243 12.5 CA, USA
3 Oxisol 1.4 11.7 5.6 694 74 11.6 Vihiga, Kenya
4 Vertisol 1.8 14.7 7.7 446 81 32.0 CA, USA
5 Vertisol 1.6 11.2 6.1 392 269 25.3 CA, USA
6 Vertisol 1.0 12.4 7.0 540 135 31.1 CA, USA
7 Histosol 8.3 14.8 7.7 236 502 31.2 CA, USA
8 Histosol 37.7 25.3 5.3 125 500 2.0 MN, USA
9 Histosol 29.7 16.0 7.7 102 414 55.8 FL, USA
10 Inceptisol 3.3 10.8 4.8 176 395 8.9 RI, USA
11 Inceptisol 1.2 15.5 4.5 281 311 7.0 CA, USA
12 Inceptisol 1.5 11.4 6.6 317 156 21.4 CA, USA
13 Mollisol 3.7 14.6 6.0 275 66 26.9 IL, USA
14 Mollisol 1.1 10.4 8.1 284 330 15.3 MO, USA
15 Mollisol 3.1 12.4 6.1 256 105 14.7 CA, USA
16 Alfisol 1.1 10.1 8.0 228 292 17.4 IL, USA
17 Alfisol 0.9 8.4 6.5 300 200 19.1 CA, USA
18 Alfisol 2.4 10.2 5.7 75 850 26.6 IL, USA
19 Ultisol 0.8 ndb 6.1 236 503 3.0 FL, USA
20 Ultisol 4.1 21.7 5.8 128 668 8.0 CA, USA
21 Ultisol 7.0 22.0 5.4 225 474 20.4 CA, USA
22 Entisol 8.9 68.5 8.1 203 418 92.3 FL, USA
23 Entisol 0.9 8.9 7.3 25 925 21.1 CA, USA
24 Entisol 1.5 13.9 6.4 107 680 11.2 CA, USA
25 Andisol 8.0 19.6 6.0 103 819 9.4 CA, USA
26 Andisol 7.4 19.6 5.8 77 743 11.7 CA, USA
27 Andisol 4.4 21.1 6.3 0 918 10.5 CA, USA
28 Spodosol 6.2 13.2 4.7 0 950 10.0 FL, USA
29 Spodosol 2.3 25.0 4.4 25 900 3.7 FL, USA
30 Spodosol 2.7 11.9 5.7 0 364 24.8 FL, USA
31 Aridisol 1.3 9.9 7.8 0 671 24.9 CA, USA
32 Aridisol 0.7 12.2 7.1 0 874 18.9 NV, USA
33 Aridisol 0.2 nd 8.1 716 79 7.4 NV, USA
34 Gelisol 17.5 19.9 6.9 480 243 25.0 AK, USA
35 Gelisol 20.8 15.8 5.3 694 74 22.5 AK, USA
36 Gelisol 32.8 29.8 5.2 446 81 31.7 AK, USA

a CEC = cation exchange capacity.
b nd = non-detectable total soil N (<0.05%).
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For decades, permanganate oxidation has been used to describe the
portion of soil organic matter that is thought to turnover quickly and
have a relatively short residence time (Blair et al., 1995; Matsuda and
Schnitzer, 1972; Willard et al., 1956). Oxidation by relatively dilute
solutions (<0.5 mol L−1) of permanganate (MnO4

−) has been used to
describe both C (Lefroy et al., 1993; Loginow et al., 1987) and N dy-
namics (Bundy and Bremner, 1973; Carski and Sparks, 1987). The
concentration of MnO4

− used in these evaluations have varied over an
order of magnitude, ranging from 20 mmol L−1 to 333 mmol L−1

(Loginow et al., 1987; Weil et al., 2003). Higher concentrations with
longer shaking times have been found to produce inconsistent results
(Tirol-Padre and Ladha, 2004) and are less sensitive to changes in
management (Lucas and Weil, 2012; Weil et al., 2003), prompting the
use of lower concentrations and shorter reaction times. While there is a
broad consensus to use 20 mL of 0.02 mol L−1 MnO4

−, slight variations
in shaking time still exist, with both 12 (Culman et al., 2012; Hurisso
et al., 2016; Weil et al., 2003) and 10 min (Bongiorno et al., 2019;
Moebius-Clune et al., 2017; NRCS, 2019) of total reaction time being
utilized. However, even these slight variations are indicative of a
broader convergence from previous times of up to 24 h (Tirol-Padre and
Ladha, 2004).

Although there has been convergence on the concentration of the
solution and reaction time, other potential methodological considera-
tions have been less studied. Of particular interest for standardization
are the mass of soil reacted and the sieve size through which that soil
has been passed. These methodological decisions have the potential to
influence both absolute values of POXC (i.e. sensitivity), as well as the
analytical variability (i.e. repeatability). Balancing these considerations
is essential to ensure reliable quantification across edaphic contexts.
More broadly, these methodological decisions have implications for the
utility of POXC to inform land management decisions. Here, we will
examine how soil mass and sieve size influence absolute POXC values
and the analytical variability. In order to differentiate between treat-
ment effects and lab or operator effects, soils were sent to twelve labs in
the United States and Europe. The objectives of this study were to de-
termine 1) changes in absolute POXC values associated with soil mass
and sieve size decisions, 2) the range of potential within-lab variability
of POXC, and 3) the relative contributions of soil mass and sieve size to
analytical variability of POXC. To evaluate the robustness of these
findings, we examined these sources of variability using three soils from
each of the twelve soil orders of the USDA classification system (n = 36
soils total).

We hypothesized that a decrease in soil mass from 2.5 g to 0.75 g
would increase absolute POXC values due to the greater ratio of oxidant
(MnO4

−) to substrate (soil organic C [SOC]). However, we hypothe-
sized that this lower soil mass would result in greater variability from
sample to sample (i.e. between analytical reps), increasing the analy-
tical variability. We also hypothesized that decreasing sieve size from
<2.0 mm to <0.5 mm would expose physically occluded organic
matter to oxidation, increasing absolute values of POXC and would
produce more consistent values. Finally, we hypothesized that within-
lab variability would be the largest contributor to the variability of the
metric, i.e. that internal lab practices would outweigh the variability
associated with methodological considerations.

2. Materials and methods

2.1. Soil sampling and characterization

Three soils for each of the twelve USDA orders were obtained from a
combination of archived collections and field sampling. Surface A
horizons were sampled for mineral soils and O horizons were obtained
for Histosols and Gelisols. Soils were air-dried and sieved to <2 mm
prior to characterization for chemical and physical properties. Soil pH
was determined in water (1:2 m/v) after equilibrating for 30 min
(Thomas, 1996). Soil texture was determined by the hydrometer

method, using overnight shaking (16 h) in sodium hexametaphosphate
to disperse mineral particles (Bouyoucos, 1962). Total organic C was
determined by dry combustion chromatography (Nelson and Sommers,
1996) and soil organic C (SOC) was estimated for soils after gravimetric
determination of potential carbonates using dilute HCl (Harris et al.,
2001).

Soils analyzed in the current study included three soils from each of
the twelve USDA soil orders and encompassed a wide range of soil
physicochemical properties (Table 1). Soil organic carbon contents
ranged from 0.21% to 37.7% by mass (median = 2.3%, mean = 6.4%).
Clay contents ranged from 0.0 g kg soil−1 to 716.5 g kg−1 soil
(median = 226.6 g kg−1 soil, mean = 244.3 g kg−1 soil) and sand
contents ranged from 66.5 g kg−1 soil to 949.8 g kg−1 soil
(median = 404.7 g kg−1 soil, mean = 439.1 g kg−1 soil). Further soil
physicochemical properties are summarized in Table 1. Soil series and
USDA taxonomic classification information are summarized in Table
S1.

2.2. Sample processing and distribution

In order to minimize artifacts due to soil processing, we air-dried,
hand sieved the soil by gently pressing soil through <0.5 mm or
<2.0 mm sieves, and then homogenized the sample before sending to
twelve different laboratories in the US and Europe. Sieve sizes of
<0.5 mm and <2.0 mm were based on the two most common sieve
sizes used for high-grade chemical analyses (e.g. synchrotron, mass
spectroscopy) and in commercial soil test labs, respectively. Then, each
participating laboratory performed the KMnO4 oxidation on five ana-
lytical replicates using a mass of 0.75 g (±0.02 g) or 2.50 g (±0.05 g).
The mass of 0.75 g was empirically derived a priori as the mass for
which low SOC soils produced detectable levels of POXC and high SOC
soils were within the maximum limit of quantification (e.g. 4800 mg
POXC kg−1 for 0.75 g soil). All oxidations were performed by the same
operator within each laboratory.

2.3. Permanganate oxidation and reading by colorimetry

We performed each oxidation using the methods of Lucas and Weil
(2012), specifically the protocol outlined by Culman et al. (2012)
(https://lter.kbs.msu.edu/protocols/133). In brief, soils were weighed
into 50 mL polypropylene tubes prior to the oxidation step. We initiated
the oxidation reaction by adding 18 mL of deionized water and 2 mL of
0.2 mol L−1 KMnO4 (final reaction concentration = 0.02 mol L−1

MnO4
−) to each tube containing pre-weighed soil, shaking for exactly

2 min on a reciprocal shaker and allowing to settle for exactly 10 min.
After settling for exactly 10 min, we terminated the reaction by trans-
ferring 0.5 mL of supernatant into a fresh 50 mL tube with 49.5 mL of
deionized water, which we then inverted to mix thoroughly, resulting in
a homogenized 1:100 dilution. Since oxidation occurs over time and
total C oxidization is time sensitive, consistency in the timing of ter-
mination between replicates and across batches is essential to re-
producible measurements. To minimize variability in reaction termi-
nation time, the five analytical replicates were run in sequence. The
1:100 dilution was then transferred to either microcuvettes or a 96-well
plate reader and analyzed by UV–Vis spectrophotometry to quantify
MnO4

− remaining in solution by absorbance at 550 nm. After the re-
action has been terminated and the 1:100 dilution completed, the
MnO4

− in solution should be consistent and the subsequent quantifi-
cation step is less time sensitive. No difference in analytical variability
or absolute values were found between readings from microcuvettes
and readings from 96-well plate readers (F1,10 = 1.7, p = 0.225, data
not shown). Adjusted absorbance was then calculated by subtracting
the mean of three blanks from the raw absorbance for each sample.

We then used the adjusted absorbance to calculate the total POXC
using the following equation:
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=

+ × ×

×

a b Ab

Mass

POXC (mg kg soil)
[[0.02 mol L ( ( s ))] (9000 mg C mol )

(0.02 L solution)]
(kg)

adj

1

1 1

(1)

where 0.02 mol L−1 is the initial concentration of the oxidation solu-
tion, a is the intercept of the standard curve, b is the slope of the
standard curve, Absadj is the adjusted absorbance, 9000 mg C mol−1 is
the assumed mass of C oxidized by 1 mol of Mn7+ oxidizing to Mn4+

(Weil et al., 2003), 0.02 L is the volume of solution in the oxidation
step, and Mass is the mass of soil (in kg) reacted in the tube. To max-
imize consistency between labs, we calculated a and b for each batch
and then used the resulting equations to simultaneously calculate POXC
values from adjusted absorbance values (Absadj). To maximize con-
sistency across labs, we used the same KMnO4 concentrations to con-
struct all standard curves: 0.020 mol L−1, 0.015 mol L−1, 0.010 mol
L−1, and 0.005 mol L−1. Using the theoretical maximum of MnO4

−

reduced per unit of soil mass (9000 mg C mol−1 MnO4
−), we con-

sidered values between 0 and 1440 mg kg−1 soil valid for the 2.5 g soil
treatment and 0–4800 mg kg−1 soil valid for the 0.75 g soil treatment.
Values outside of this range were excluded from consideration in
measurements of analytical variability, but were used to calculate de-
tection rates. All values are expressed on an air-dried weight basis.

2.4. Statistical analyses

All statistical analyses were run in RStudio version 1.2.5001
(RStudio Team, 2019). Absolute values were determined by averaging
all values for each combination of soil, mass, and sieve size. Averaging
for each group was performed using the group_by() and summarise()
command in the dplyr package (Wickham et al., 2019).

Given that the sieving was performed in one location, we considered
these pre-oxidation treatments—mass and sieve size—fixed effects in
our statistical model. Thus, we assume that any variation due to sieve
size and mass occur independently of any lab-specific variation, i.e.
these effects are not nested within each laboratory. Similarly, the
variability attributed to each soil was considered fixed and not nested
within each laboratory. Thus, our initial linear model to assess sources
of variation was:

= + × × +Y Lab Soil Mass Sieve Sizetreatment treatment (2)

where Y is the coefficient of variation (CV; expressed as a %) of the five
analytical replicates. We then eliminated interaction terms that did not
significantly contribute to analytical variability (p > 0.10) to develop
our reduced model. Sieve size was retained due to its interaction with
soil (Table 2).

To determine whether each soil should be assessed individually or
grouped by soil order, we compared a reduced model where Soil re-
ferred to each of the 36 unique soils with a reduced model where Soil

Table 2
Summary of POXC values for each soil and treatment. Values are mean, median, and median absolute difference (all in mg POXC kg−1 soil). Analytical variability (%
coefficient of variation) for each soil is also summarized. Averages (mean and median) are n = 50 for 0.75 g and n = 60 for 2.5 g. CV values are averaged from each
of the 12 labs.

Soil ID 2.5 g 0.75 g

<0.5 mm <2.0 mm <0.5 mm <2.0 mm

Average CV (%) Average CV (%) Average CV (%) Average CV (%)

1 342, 324, 41 8.7 274, 259, 57 11.0 373, 323, 211 23.7 317, 251, 198 21.1
2 287, 278, 52 9.3 253, 230, 41 11.9 361, 271, 102 25.0 250, 202, 141 37.3
3 274, 267, 42 10.0 247, 237, 41 12.1 390, 329, 150 27.7 321, 315, 123 22.9
4 497, 516, 55 5.8 410, 414, 57 5.1 612, 616, 151 15.9 502, 509, 106 16.8
5 557, 573, 32 4.6 476, 511, 48 4.5 643, 655, 156 11.2 611, 593, 163 13.9
6 345, 357, 37 8.5 278, 282, 41 10.3 464, 390, 172 27.6 315, 275, 120 26.3
7 1155, 1166, 224 3.8 917, 929, 166 7.4 1891, 1965, 414 4.6 1435, 1412, 322 8.6
8 – – – – 4450, 4687, 124 4.6 3660, 3657, 564 6.4
9 – – – – 4319, 4414, 180 1.7 4040, 4127, 222 2.1
10 427, 385, 60 7.2 347, 317, 72 8.7 514, 457, 207 14.5 525, 392, 162 14.0
11 268, 275, 57 14.4 252, 239, 76 12.7 380, 271, 196 37.9 437, 293, 198 41.4
12 554, 556, 73 4.3 497, 496, 87 6.7 600, 562, 159 12.7 548, 477, 192 15.3
13 625, 627, 45 5.1 576, 582, 40 7.8 774, 750, 163 11.1 731, 749, 111 14.9
14 241, 202, 32 11.3 195, 159, 34 10.5 270, 231, 96 30.8 241, 227, 102 26.6
15 852, 847, 70 4.3 710, 674, 136 6.7 1214, 953, 195 11.7 1104, 814, 130 11.5
16 245, 231, 46 8.5 190, 182, 38 12.0 288, 214, 115 27.9 343, 235, 72 26.5
17 229, 219, 24 11.6 234, 218, 40 12.9 283, 180, 136 47.1 299, 234, 131 23.1
18 638, 630, 57 4.2 553, 549, 77 7.1 905, 768, 160 14.1 813, 721, 124 10.4
19 167, 153, 35 17.4 174, 165, 36 16.9 244, 212, 117 44.7 212, 204, 120 21.0
20 907, 931, 110 2.2 640, 645, 116 7.1 1230, 1199, 289 7.0 865, 856, 227 13.7
21 1171, 1210, 90 2.2 946, 959, 131 4.0 1650, 1648, 295 5.3 1243, 1218, 241 11.6
22 374, 387, 43 5.9 365, 357, 41 9.9 409, 404, 130 18.9 475, 433, 131 26.4
23 447, 493, 63 6.6 389, 410, 37 8.2 531, 547, 123 14.7 519, 496, 141 28.2
24 618, 617, 122 6.9 387, 386, 57 11.9 792, 739, 209 14.6 492, 482, 136 24.9
25 984, 1011, 365 8.3 967, 946, 210 8.0 1590, 1499, 638 12.6 1495, 1404, 324 11.7
26 831, 852, 306 9.7 705, 691, 156 9.6 1231, 1247, 484 16.4 1009, 1073, 245 16.9
27 420, 439, 188 14.7 378, 395, 93 12.8 612, 560, 141 20.4 534, 473, 167 21.8
28 1039, 1033, 234 6.8 1075, 1034, 152 6.7 1719, 1765, 470 9.2 1664, 1641, 291 8.8
29 514, 505, 61 8.7 501, 489, 43 5.7 714, 640, 123 17.9 690, 598, 171 27.5
30 780, 807, 72 4.4 829, 839, 100 5.9 997, 988, 159 10.9 1084, 1048, 201 12.9
31 333, 348, 47 5.1 313, 333, 52 6.2 380, 324, 85 15.8 343, 328, 143 19.4
32 302, 229, 47 9.4 215, 144, 51 20.9 600, 274, 66 25.8 537, 195, 90 26.7
33 102, 90, 24 30.5 149, 70, 18 24.5 115, 111, 53 27.3 96, 90, 56 38.3
34 – – – – 4486, 4657, 141 1.0 4291, 4416, 153 2.0
35 – – – – 2953, 2519, 1236 12.4 2429, 2410, 747 10.5
36 – – – – 4318, 4521, 298 3.1 4094, 4145, 397 3.7
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referred to the USDA Soil Order. We compared these reduced models
using the Akaike Information Criteria (AIC) (Akaike, 1974) and the
likelihood ratio test (Perneger, 2001), both of which indicated that
characterizing each soil uniquely was a more parsimonious model fit.
Analytical variability by soil order can be found in Table S2 and Fig. S1.

Our final reduced model was estimated using the lm() command.
The resulting linear regression was log transformed to meet linear re-
gression assumptions. Statistical significance of each variable was de-
termined with the Anova() command in the car package (Fox and
Weisberg, 2019). Normality of residuals was ascertained using the
shapiro.test() command to conduct a Shapiro-Wilk test of normality.
Additional verification of normality of residuals, homogeneity of var-
iance, and the leverage of individual observations was performed vi-
sually using the plot() command. We quantified relative contributions
of each variable (i.e. lab, soil, or soil mass/sieve size treatment) to
overall analytical variability using the estimated marginal means for
each variable. Estimated marginal means (also referred to as least-
square means) for each factor or set of factors in the final reduced
model were obtained using the emmean() command in the emmeans
package (Lenth, 2019). Therefore, each estimate of analytical var-
iability—whether by soil, lab, soil × sieve size, or otherwise—is an
estimated marginal mean, which accounts for other sources of varia-
bility in our model (Eq. (2)). In order to properly determine effect sizes
of each treatment and the relative precision associated with that
treatment, we used estimation statistics, rather than significance testing
(Ho et al., 2019a). Unlike significance testing, which uses p-values to
measure against the null hypothesis of no difference, estimation sta-
tistics uses a bootstrapped estimate of effect size and the precision as-
sociated with that effect size. This circumvents overreliance on
p < 0.05, which can often lead to a lack of reproducibility of effects
(Halsey et al., 2015), particularly when using categorical variables, e.g.
soil mass and sieve size. Estimation statistics were performed using the
dabest() command in dabestr package (Ho et al., 2019b). Due to the
highly skewed distributions of mass and sieve size effects, robustness to
outliers was ensured by using 5000 bias-corrected and accelerated
bootstrap resamplings (Efron, 1987) and using the median, rather than
the mean value. Estimated effect sizes and the associated 95% con-
fidence intervals are quantified and included in each plot.

3. Results and discussion

3.1. Soil characterization and POXC values

Detectable POXC values—defined as 0 to 1440 mg kg−1 soil for the
2.5 g soil treatment and 0 to 4800 mg kg−1 soil for the 0.75 g soil
treatment—spanned nearly the entire detection range for both masses.
For the 2.5 g mass, POXC values ranged from 4 to 1406 mg POXC kg−1

soil (median = 427 mg POXC kg−1 soil, mean = 504 mg POXC kg−1

soil). For the 0.75 g mass, POXC values ranged from 0.8 mg to 4790 mg
POXC kg−1 soil (median = 651 mg POXC kg−1 soil, mean = 1161 mg
POXC kg−1 soil), indicating a 34% increase in the median measured
POXC value by decreasing the mass of soil analyzed. Average POXC
values and analytical variability for each combination of soil and
treatment are listed in Table 3. The median absolute deviation—which
is similar to standard deviation, but is more robust for our skewed
data—ranged from 18 mg POXC kg−1 soil to 1236 mg POXC kg−1 soil
(Table 2). The wide range of absolute differences in POXC values un-
derscores how much the POXC values can vary for the same soil. The
95% confidence interval for the median absolute deviation was
126–178 mg POXC kg−1 soil (mean = 152 mg POXC kg−1 soil, data not
shown) indicating that absolute deviations of ~150 mg POXC kg−1 soil
are likely to occur. Since greater deviations tend to happen for soils
with higher average POXC values, there is a need to relativize error,
such as using the coefficient of variation or a percent change. Given the
range of soil properties and detected POXC values, these values are
likely representative of a broad set of edaphic conditions.

3.2. Methodological effects on absolute values of POXC

One of the most common processing treatments for soils is sieving or
grinding of the soils prior to analysis. The resulting sieve size classes are
especially salient in the measurement of soil C fractions, due to the
physical occlusion of C within soil structures (von Lützow et al., 2008).
Accordingly, we hypothesized that the smaller sieve size (<0.5 vs
<2.0 mm) would increase POXC values, a hypothesis that was largely
confirmed (Fig. 1a). On average, the <0.5 mm sieve size increased
POXC values by 124 mg POXC kg−1 soil (median = 56 mg POXC kg−1

soil). This is a further extension of the results of Hurisso et al. (2018b),
who found that decreasing sieve size from <8 mm to <2 mm increased
POXC values an average of 141 mg POXC kg−1 soil across three soils.
However, our results show that the size of this effect can vary con-
siderably, from −188 mg POXC kg−1 soil (i.e. a decrease in POXC) to
876 mg POXC kg−1 soil. On a relative basis, this is an average of 4.0%
greater POXC values at the <0.5 mm sieve size than at the <2.0 mm
(range = −272.6% to 37.6%). It is expected that smaller sieve size
would increase POXC values and that this would vary, but not that
POXC values would decrease (6 of 36 soils). While there was no ap-
parent physicochemical characteristic(s) underlying these six soils (soils
11, 17, 22, 29, 30, and 33) that could explain this unexpected result,
five of the six decreases were for soils with <100 mg POXC kg−1 soil or
<20% relative decrease. Therefore, while <0.5 mm sieve size has an
inconsistent direction on POXC values, the resulting analyses are likely
to be substantively similar. This finding also suggests that it may not be
possible to standardize sieve size in a “one size fits all” approach.

In addition to decisions regarding sieve size, the mass of soil re-
quired for analysis is vital to consider in the standardization of POXC
because it can change the amount of SOC present in the sample for
oxidation by a fixed amount of MnO4

−. Our hypothesis that a decrease
in soil mass from 2.5 g to 0.75 g would increase POXC values was
mostly confirmed. The 0.75 g mass had POXC values that were 177 mg
POXC kg−1 soil greater than the 2.5 g mass (median = 111 mg POXC
kg−1 soil), an average increase of 32.4% (range = −5.0% to 114.6%).
This trend was consistent for 35 of the 36 soils, with the exception of
soil 31 for which POXC slightly decreased by 16 mg POXC kg−1 soil.
While this ratio of soil (and soil SOC) to 0.02 mol L−1 KMnO4 has not
been specifically evaluated for POXC, the effect of soil-to-solution ratios
has been shown to influence absolute values for a variety of soil che-
mical extractions, including extractable organic carbon (Kaiser et al.,
2001), inorganic N (Li et al., 2012), phosphate (Fuhrman et al., 2005),
heavy metals (Yin et al., 2002), and even pH (Hendershot et al., 1993).

Standardization of a soil mass-to-solution ratio for POXC may pro-
vide consistency among studies and should be more thoroughly in-
vestigated. Previous work using KMnO4 to measure labile C standar-
dized the analysis on the basis of total SOC, rather than on a soil mass
basis (Blair et al., 1995). However, this practice has gone largely un-
adopted due to the increased labor associated with its use. Although
standardizing on a mass basis is scientifically rigorous, it may be less
amenable to the high-throughput context of commercial soil test labs,
which often employ a volumetric scoop for rapid soil preparation
(Hoskins and Ross, 2011; Miller et al., 2013; Mylavarapu and Miller,
2014; Peck, 2015). This further modification of POXC for high
throughput analysis (and more generally any soil test) may be a

Table 3
Soil IDs included in each processing treatment and the proportion of assays that
resulted in MnO4

− concentration within the range of detection.

Sieve Size Mass Soil IDs
excluded

n Detection limit (mg
POXC kg−1 soil)

% Detectable

<0.5 mm 0.75 g none 2141 4800 96.0
2.50 g 8, 9, 34–36 1835 1440 99.5

<2.0 mm 0.75 g none 2142 4800 95.7
2.50 g 8, 9, 34–36 1833 1440 99.1
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significant source of variation, necessitating lab proficiency testing for
appropriate quality assurance/quality control (QA/QC). While QA/QC
might establish tolerance limits, it would not address the potential for
an unequal distribution of bias across SOC contents.

3.3. Methodological considerations and detection limits

The finite amount of MnO4
− in the oxidizing solution (0.4 mmol)

results in upper limits of quantification for the measurement of POXC.
These upper limits change based on the soil mass, which is reflected in
the exclusion of high SOC soils (>10% SOC) from consideration at
2.5 g (Table 4). For the soils included at each soil mass, nearly all of the
samples were within the limits of detection (>95%). However, the
proportion of values falling within the detection limits was not con-
sistent across SOC contents (Fig. 2). In the 2.5 g soil mass, which were
exclusively using soils <10% SOC, detection rates fell off at SOC con-
tents <1.0% due to non-detectable levels of POXC in samples from both
<0.5 mm and <2.0 mm sieve sizes (Fig. 2c and d). However, detection
rates were generally higher for 2.5 g than for 0.75 g (Table 3). This
difference is largely attributable to the lower absolute values of POXC
measured using 2.5 g relative to 0.75 g soil (Fig. 1b). The lower POXC
values at 2.5 g results in a greater proportion of POXC values within
detection limits, increasing the overall detection rate. In the 0.75 g soil
mass, we found decreased detection at both high SOC contents (>10%)
and at low SOC contents (<5%) in the <0.5 mm sieve size. This
combination resulted in values that were simultaneously above and
below detection limits. Samples analyzed with 0.75 g mass at <2.0 mm
sieve size maintained detection rates at higher SOC contents (>10%).
For 0.75 g mass, soils with lower SOC contents (<5.0%) and <2.0 mm
sieve size had a sharper decrease in detection than for <0.5 mm,
presumably due to increased consumption of MnO4

− (i.e. higher POXC
values) associated with the <0.5 mm sieve size (Fig. 1a). Thus, while
0.75 g may allow for soils with a broader range of SOC contents to be
measured for POXC, soils with greater SOC content will require an in-
creased number of replications to ensure detectable values. Similarly,
2.5 g soil masses may provide consistent detection at SOC contents
<10%, but greater replication will be required at very low SOC values
(<1%). These results collectively show that across SOC contents, re-
plication is needed to ensure a sufficient number of detectable values.

3.4. Overall analytical variability

The coefficient of variation of the five analytical replicates for each
unique set of soil, sieve size, and soil mass ranged from 0.04 to 171.8%

(median = 7.85, mean = 13.41; data not shown). The distribution of
the total analytical variability was highly positively skewed, i.e. had
several extreme high values. The 95% confidence interval for the
overall distribution—after transformation to meet normality assump-
tions and backtransformation into natural values—was 7.2 to 8.0%
with a mean overall variability of 7.6% (data not shown). These values
of POXC analytical variability largely agree with the values obtained by
Hurisso et al. (2018a) and are comparable to the analytical variability
of Mehlich-3 extractable P and K also evaluated therein. However, a
clearer understanding of the contributing sources of this variability will
help improve the reliability and robustness of this metric across con-
texts.

3.5. Inter-lab analytical variability

We found salient inter-lab effects on the variability of POXC mea-
surements (Table 4, p < 0.00001), although soil mass also influenced
analytical variability (Table 4, p < 0.00001). Additionally, each soil
had differing levels of analytical variability (Table 4, p < 0.00001), an
effect which varied by sieve size (Table 4, p = 0.009). Although F-
values can often be used as measures of overall effect, the transfor-
mations needed to meet assumptions of normality prevent a direct
comparison of F-values to be made. Therefore, we will examine the
overall contribution (in backtransformed values) in the following sec-
tions to quantify the relative contributions of each of these sources to
the overall observed analytical variability.

3.6. Intra-lab analytical variability

A significant source of variation of any soil measurement is attri-
butable to lab-specific variability. Here, we found that analytical
variability ranged from 2.9 to 15.8% within a given lab (Fig. 2;
median = 6.5, mean = 7.7). Most labs (25 to 75% quartiles) had intra-
lab analytical variability ranging from 5.1 to 10.7%. There were no
systematic differences in reliability between labs that used a 96-well
plate reader and labs that used microcuvettes (F1,10 = 1.7, p = 0.225,
data not shown). Internal practices such as KMnO4 reagent storage
conditions, consistency of reaction times, error in the dilution step, or
pipetting errors prior to dilution may have contributed to this varia-
bility, though these are beyond the scope of the current study. How-
ever, the suitability of POXC for high-throughput commercial testing
labs (Bongiorno et al., 2019) and the potential for substantial inter-
laboratory variability (Table 4; p < 0.00001) suggest that POXC would
benefit from lab proficiency testing.

3.7. Contribution of soil mass to analytical variability

Alterations of the mass of soil used in POXC analysis can produce
differences in absolute values (Fig. 1b), but the implications of soil mass
for analytical variability are understudied. We hypothesized that a
greater soil mass (2.5 g) would allow for a greater and thus more
consistent mass of SOC in a given sample, resulting in lower analytical

Fig. 1. Absolute differences in POXC values between (a) sieve sizes and (b)
mass. Note the differences in scale. Values are estimated marginal means for
each soil using Eq. (2) and are in mg POXC kg−1 soil.

Table 4
Final reduced model assessing relative sources of analytical variability (%CV)
for all detectable POXC values. All experimental factors were initially included
in the model and non-significant effects (p ≥ 0.10) were eliminated from the
model one at a time. Final model was log transformed to meet assumptions of
normality.

Experimental Factor df F-value p-value

Lab 11 62.1 <0.00001
Mass 1 438.7 <0.00001
Sieve size 1 47.0 <0.00001
Soil ID 35 35.5 <0.00001
Soil ID × Sieve size 35 1.7 0.009
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variability than for a lower soil mass (0.75 g). Confirming this hy-
pothesis, analytical variability was 6.5% greater for POXC values
measured with 0.75 g relative to the 2.5 g (Fig. 3). Median analytical
variability more than doubled from 5.1% at 2.5 g to 11.6% at 0.75 g.
This increase in median CV value is equivalent to the median lab-spe-
cific variability (Fig. 4a), underscoring the importance of this standar-
dization for routine, repeatable POXC analysis.

3.8. Contribution of sieve size to analytical variability

The standardization of soil sieve size prior to analysis is a common
consideration for soil analytical methods. As soil aggregates are broken
and the physically protected soil C is exposed, this organic matter be-
comes more susceptible to oxidation, regardless of chemical composi-
tion (Dungait et al., 2012). Therefore, we hypothesized that a finer
sieve size (i.e. <0.5 mm) would produce a more consistent measure-
ment of POXC than a larger sieve size (i.e. <2.0 mm), yielding lower
analytical variability. While this hypothesis was largely confirmed
(Fig. 4b), the magnitude of this difference was smaller than expected. A
1.8% decrease in median CV from 8.4% in <2 mm sieve size to 6.6% in
<0.5 mm represents a modest improvement in analytical variability.
This difference is much lower than the ~ 10% decreases that Hurisso
et al. (2018b) reported for soils sieved to <8.0 mm (CV ≈ 20%) to
<2.0 mm (CV ≈ 10%). Thus, both the absolute variability and the
relative change in that variability was lower in our study than in
Hurisso et al. (2018b). However, the variability at <2.0 mm was
comparable across both studies (CV ≈ 10%). Our results and those of
Hurisso et al. (2018b) collectively demonstrate higher analytical
variability of POXC values in coarser sieve size treatments. However,
sieving to smaller sizes seems to produce diminishing returns in terms
of analytical variability. Additionally, manual sieving used in this
study, as is commonly practiced by research labs, produced similar
analytical variability as samples mechanically flail ground to the same
size (<2.0 mm), as is commonly employed in commercial test lab
settings (Hurisso et al., 2018b).

While sieve size exerted a strong main effect on analytical varia-
bility (Table 4, Fig. 4b), the relationship was not straightforward, as
indicated by the soil × sieve size interaction (Table 3, p = 0.009).
Upon further examination of the interaction term, we found differences
in both direction and magnitude of this effect (Fig. 5). The magnitude of
the sieve size effect on analytical variability—the absolute value of the
difference between <0.5 mm and <2.0 mm sieve sizes—ranged from
0.04% in soil 28 to 10.6% in soil 32 (mean Δ = 1.64%). The magnitude
of this difference was inversely related to SOC content (F1, 70 = 4.4,

p = 0.039, data not shown). Thus, soils with a lower SOC content ex-
pressed larger differences in analytical variability between sieve sizes.
In most soils (31 out of 36), this entailed lower analytical variability at
<0.5 mm sieve size than at <2.0 mm, as hypothesized. However,
several soils exhibited increased variability at the <0.5 mm sieve size,
and this did not appear to be explained by physicochemical properties.
Of the soils with this inverse relationship, three of the five (soils 11, 27,
and 28) had negligible (<1%) changes in variability, whereas soils 17
and 19 had larger changes in variability (3.6% and 5.9%, respectively).
Nevertheless, the trend of substantially lower or effectively unchanged
analytical variability using the <0.5 mm sieve size was consistent
across soils.

3.9. Soil-specific sources of variability

One of the more formidable hurdles to widespread implementation
of POXC is the differing degree of soil-specific analytical variability
(Table 4; p < 0.00001). Using the standard soil physicochemical
properties examined here (Table 1), we found that SOC content had the
strongest effect on soil-specific variability. We found similar, negative
logarithmic relationships between SOC and soil analytical variability
for both <0.5 mm and <2.0 mm sieve sizes (Fig. 6a and b). Thus,
lower SOC contents had greater overall analytical variability than
higher SOC contents, independent of sieve size. At lower SOC contents,
the amount of SOC per sample is likely more susceptible to slight var-
iations between replicates, ultimately increasing analytical variability.

3.10. Conversion between masses and sieve sizes

Differences in methodology—varying the soil mass and sieve si-
ze—resulted in changes in absolute POXC values by both sieve size and
mass (Fig. 1a and b, respectively). The differences in absolute values
attributable to these methodological differences prevent direct com-
parison of POXC values across treatments. To facilitate comparisons, we
developed equations to convert among POXC values derived using
different masses and sieve sizes (Table 5). For these soils, conversions
between soil mass and sieve size treatments were generally accurate,
with R2 values >0.90. The root mean square error (RMSE)—a mea-
surement of the expected error of the estimate in mg POXC kg−1

soil—ranged from 55 to 100 mg POXC kg−1 soil for soils <10% SOC.
Conversions within a given sieve size were more accurate than con-
versions within a mass (R2 values and lower RMSE). Of the two sieve
sizes, conversions were most accurate in the <0.5 mm sieve size

Fig. 2. Detections rates (%) as a function of SOC for (a) <2.0 mm and 0.75 g,
(b) <0.5 mm and 0.75 g, (c) <2.0 mm and 2.5 g, and (d) <0.5 mm and 2.5 g.
Dashed lines indicate average detection across all soils for that set of sieve size
and soil mass.

Fig. 3. Range of analytical variability that is attributable to within-lab sources.
Top represents the continuous probability function, while the bottom indicates
the specific variation for each of the twelve labs. Values are estimated marginal
means from Eq. (2) for each lab.
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(R2 = 0.968, RMSE = 53 mg POXC kg−1 soil). Therefore, we found
that approximations can be made across these soil mass and sieve size
treatments.

4. Future work

To date, the most prominent adaptations of the POXC measurement
in soils have altered the concentration of MnO4

− (Weil et al., 2003) and
the mass of soil (Culman et al., 2012) but still accepting the underlying
chemistry assumptions. Future work should address two central as-
sumptions to further refine the measurement. First, assumptions about
the oxidation-reduction processes should be examined. As Gruver
(2015) noted, the assumed relationship of 1 mol Mn7+ oxidizing
9000 mg of C (Eq. (1)) assumes that C0 → C4+ and Mn7+ → Mn4+, a
stoichiometric relationship of 0.75 mol C to 1 mol Mn. At circumneutral
pH, Mn7+ reduces to Mn4+, but at acidic pH, a nearly complete re-
duction of Mn7+ to Mn2+ would be expected (Ladbury and Cullis,
1958). The redox state of SOC can vary considerably by texture
(Keiluweit et al., 2018, 2017) and can reflect the composition of C in-
puts (Spokas, 2010). Because the stoichiometry of carbon oxidation and
permanganate reduction is a necessary assumption in the calculation of
POXC, this value should be empirically determined for soil conditions

Fig. 4. Changes in analytical variability of permanganate oxidizable C (POXC)
values due to change in (a) soil mass and (b) sieve size. Values are back-
transformed estimated marginal means for each unique combination of soil, soil
mass, sieve size, and lab. The 95% confidence intervals for the difference be-
tween treatments is based on bias-corrected accelerated bootstrap resampling
with 5000 resamplings.

Fig. 5. Interactive effects of sieve size and soil on analytical variability on
permanganate oxidizable C (POXC) values. Bolded soils indicate that CV of
<0.5 mm was greater than <2.0 mm. Dashed line indicates mean CV for all
soils (CV = 8.86). All values are backtransformed estimated marginal means
using Eq. (2).

Fig. 6. Analytical variability of permanganate oxidizable C (POXC) for each soil
by SOC content at (a) sieve size <2.0 mm and (b) sieve size <0.5 mm
(mass = 0.75 g for both).
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(e.g., texture, SOC quality) that can impact the conversion of a measure
of MnO4

− reduction to a SOC concentration. It is possible that “the use
of a constant stoichiometric relationship when calculating [POXC] may
be more a matter of convenience than accuracy” (Gruver, 2015). Sec-
ondly, quantification of POXC on a SOC, not soil mass basis (i.e., con-
stant ratio of MnO4

−:SOC) as in Lefroy et al. (1993) and Blair et al.
(1995) could represent a substantial improvement in the repeatability
of the metric by accounting for nonlinearities (Gruver, 2015). Estab-
lishment of a consistent ratio of reducing agent (soil C) to oxidizing
agent (MnO4

−) may be necessary to ensure the reliability of a mea-
surement based on a reduction-oxidation reaction.

Although methodological considerations have been central in many
discussions, the question remains: “What fraction of soil C is the per-
manganate oxidizing?” Several evaluations of this question have been
largely inconclusive (Margenot et al., 2017; Romero et al., 2018). Better
understanding the nature of POXC is critical to its use as an indicator of
soil health given the mechanistic assumptions of this operationally
defined C fraction implicit in its description as “active C” or “microbial
food” (NRCS, 2019).

5. Recommendations

The refinement of soil methods is essential to providing reliable
tools for land management decisions. However, land managers often
prefer to use multiple indicators to inform their decisions, particularly
within the realm of soil health (Andrews et al., 2002). In pursuance of
this goal, soil health indicators have often been proposed as heuristic in
place of more accurate yet labor-intensive measurements. For the cur-
rent proposition and application of POXC as an operational metric
sensitive to management, sensitivity and/or precision must be weighed
carefully against usability and ease of implementation. While we did
not exhaustively test all potential sample processing treatments, we
have focused on two methodological variations that have (in our ex-
perience) proved especially problematic. Accordingly, we developed
the following recommendations with two goals of (1) minimizing
analytical variability while (2) maximizing the utility of the POXC
metric across soil contexts. Given the range of soil characteristics in our
current dataset, we believe these recommendations are applicable
across nearly all soil contexts.

• In-house quality control practices: Our data demonstrate that one of
the least-generalizable, yet most significant sources of variation is
within-lab variability (Fig. 3). However, our data suggests that low
variability (<5%) is easily attainable. In lieu of external lab profi-
ciency testing for POXC, individual labs are recommended to de-
velop in-house quality control practices, such as internal reference
soils or technician performance testing, to minimize this significant
source of variability.

• Soil mass of 2.5 g: A soil mass of 2.5 g resulted in lower analytical
variability (Fig. 4a), but was not suitable for soils with SOC contents
>10% by mass due to full consumption of MnO4

− (i.e., no quan-
tification possible). This threshold roughly corresponds to the ~12%
SOC threshold that distinguishes mineral from organic soils in USDA
Soil Taxonomy (Soil Survey Staff, 2014). Therefore, for studies

comparing both mineral and organic soils, we recommend a lower
mass (0.75 g). Standardization of soil mass within the same study or
monitoring program is recommended because mass can markedly
affect POXC values, and this magnitude of change is greater than
any other source of variability assessed here.

• Sieve size of <2.0 mm: A finer sieve size decreased analytical
variability (Fig. 4b) for the majority of soils (Fig. 5) by 1.8%.
However, the additional sieving to <0.5 mm requires more labor
and/or time. Given the negligible decrease in variability at
<0.5 mm sieve size, we believe this additional labor time is an
opportunity cost for other in-house quality control metrics (see re-
commendation 1) that contribute a larger amount of variability.

• Replication: Our data shows that POXC, like many other soil me-
trics, has a substantial degree of analytical variability. Therefore,
analytical replication is necessary, although the reasoning for in-
creased replication varies. Soils with lower SOC contents generally
have higher variability (Fig. 6a and b), necessitating additional re-
plicates to ascertain that sample POXC values are an accurate ap-
proximation of the population mean. At SOC contents >10% or
<5%, greater replication is needed to ensure that the calculated
POXC values are within detection limits (Fig. 3), but POXC is most
often measured using one to three replicates (NRCS, 2019). The
issue of underpowered or uncertain hypothesis testing is ubiquitous
in soil science analyses (Ladoni et al., 2015; Welsch et al., 2019).
Calculated replication numbers can be found in Table S4. While we
do not have values for other standard soil measurements for the
current dataset, Hurisso et al. (2018a) found that POXC had com-
parable analytical variability to organic matter via loss-on-ignition,
a common component of agronomic soil tests.

These recommendations balance a tradeoff between the sensitivity
and the reliability of the metric. Specifically, the lower absolute POXC
values at 2.5 g (Fig. 1b) reduces the overall sensitivity of the metric,
relative to values based on 0.75 g. The decision to use a greater soil
mass also decreases the range of SOC contents at which the measure-
ment is viable, potentially complicating analyses. For example, all three
Gelisols and two of the three Histosols fully consumed the 0.4 mmol of
MnO4

− when 2.5 g soil was employed, preventing measurement of
POXC. We believe that these considerations are outweighed by the
substantial decrease in analytical variability (Fig. 4a, Δ = 6.5%) and
consistency with previously published literature (Culman et al., 2012).

6. Conclusions

As with any emerging soil health metric, POXC must be thoroughly
evaluated prior to widespread adoption. Thus, standardization of
methods and a clearer understanding of relative sources of variability
are essential steps along the path towards implementation in com-
mercial soil test labs. Across a wide range of edaphic properties, we
found that research labs (n = 12, US and EU) differed in their within-
lab variability, which ranged from 3 to 16%. A finer sieve size
(<0.5 mm) increased the absolute values of POXC (mean = 124 mg
POXC kg−1 soil; median = 56 mg POXC kg−1 soil) and decreased the
analytical variability 1.8%, relative to <2.0 mm sieve size. Using a

Table 5
Equations to convert between processing treatments for soils with SOC below 10%. All calculations are using mg POXC kg−1 soil. Bootstrapped 95% confidence
intervals for each equation can be found in Table S3.

Conversion Equation RMSEa R2

<2.0 mm: 0.75 g → 2.5 g POXC2.5g = 0.633*POXC0.75g + 56.40 55.4 0.954
<0.5 mm: 0.75 g → 2.5 g POXC2.5g = 0.608*POXC0.75g + 85.95 59.4 0.968
0.75 g: <0.5 mm → <2.0 mmb POXC<2mm = 0.821*POXC<0.5mm + 43.76 100.0 0.938
2.5 g: <0.5 mm → <2.0 mm POXC<2mm = 0.820*POXC<0.5mm + 27.72 67.7 0.932

a Root mean squared error, in mg POXC kg−1 soil.
b Conversion including soils with SOC above ~10%: POXC<2mm = 0.902*POXC<0.5mm – 13.42, RMSE = 135.1, R2 = 0.986.
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greater soil mass (2.5 g) decreased the absolute POXC values
(mean = 177 mg POXC kg−1 soil; median = 111 mg POXC kg−1 soil)
and the analytical variability (Δ = 6.5%). However, at the greater soil
mass the full consumption of MnO4

− (i.e., ‘bleaching’) for soils with
SOC >10% exceeded the limit of quantification and meant that POXC
could not be measured. Conversely, at the lower soil mass (0.75 g),
some soils with SOC <5% could be below the detection limit. Although
variability in POXC measurements was in part soil-specific, it was
generally inverse to SOC content. Therefore, we recommend that rou-
tine POXC analysis of <10% SOC soils (most mineral soils) be con-
ducted using multiple analytical replicates and a soil mass of 2.5 g. For
analyses that include high organic matter soils (>10% SOC), we re-
commend decreasing soil mass to 0.75 g for more appropriate com-
parisons across soils. While the <0.5 mm sieve size decreased analy-
tical variability relative to <2.0 mm (Δ = −1.8%), the increase in
labor associated with the finer sieve size suggests that this additional
effort is likely not merited. Given the wide range of edaphic contexts in
the current study, we believe that these recommendations are robust
across soil and climatic contexts.
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