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Abstract
Many farmers have their fields grid soil sampled to plan for variable rate P fertilizer

application. Grid soil samples are often interpolated to create fertilizer application

maps. However, most farmers and other practitioners do not compare interpolation

methods. The objective of this study was to evaluate the performance of different

grid soil sampling interpolation methods on P fertilizer prescription maps. Grid soil

samples were collected from six fields and interpolated via geographically weighted

regression (GWR), random forest (RF), and inverse distance weighting (IDW). At

four out of six site–years, the root mean square error of soil test P (STP) was 7 to 16%

lower for the GWR method compared with the RF method, and GWR identified the

low-STP areas better than RF. Geographically weighted regression may outperform

RF and IDW because of its lower error and reduced sensitivity to individual high- and

low-STP values. Evaluating multiple interpolation techniques and comparing maps

both visually and using global error rates can improve the decisions made by farmers

and other practitioners.

1 BACKGROUND ON SOIL SAMPLE
INTERPOLATION

Soil sampling and corresponding test values estimate plant-

available nutrients and are the basis for P fertilizer application

recommendations (Culman et al., 2020). In precision nutrient

management, farmers or their consultants may use a grid soil

sampling approach to locate and quantify in-field variations

in soil nutrient levels. Interpolated maps from grid sampled

soils are used to develop a variable rate fertilizer prescription.

Each field subunit in the prescription typically receives differ-

ent rates of fertilizer with the goal of increased nutrient stew-

ardship, use efficiency, and profitability (Wittry & Mallarino,

2004).

Most of the commonly used agricultural software pro-

grams, such as SMS (Ag Leader) and Trimble Ag Software

Abbreviations: GWR, geographically weighted regression; IDW, inverse

distance weighting; RF, random forest; STP, soil test phosphorus.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Crop, Forage & Turfgrass Management published by Wiley Periodicals LLC on behalf of American Society of Agronomy and Crop Science Society of America

(Trimble Inc.), provide options to the end user when it comes

to the choice of the interpolation method. However, guidelines

for choosing one method over the other are often general and

lack any measure of uncertainty associated with the estimates.

For fertilizer application at variable rates to improve nutrient

stewardship, the interpolation method used to develop pre-

scription maps must be carefully selected to accurately predict

the nutrient needs of the crop while minimizing the poten-

tial negative environmental outcomes from excess applica-

tion of P fertilizer. At high soil test P (STP) levels, P loss as

runoff increases and contributes to non-point-source pollution

(Carpenter et al., 1992; Dayton et al., 2014). If the interpo-

lation underestimates the STP level, fertilizer may be over-

applied, which increases the fertilizer cost without increasing

yield (Culman et al., 2020). In cases where interpolation over-

estimates the STP level, fertilizer may be underapplied, lead-

ing to financial risk arising from reduced yield (Brooker et al.,

2017; Fulford & Culman, 2018).
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Past regional-scale interpolation studies of soil organic

matter and soil organic carbon that used elevation, slope,

and other terrain attributes as covariates along with the soil

test value have found that geographically weighted regres-

sion (GWR)-based interpolations had lower error than multi-

ple linear regression, kriging, and regression kriging (Mishra

et al., 2010; Wang et al., 2012). However, it has been reported

that GWR is sensitive to multicollinearities between the

covariates used as predictor variables at both the global and

local scales (Wheeler & Tiefelsdorf, 2005). Random for-

est (RF) is another method that has proven to be useful in

regional-scale spatial modeling applications and is widely

used in digital soil mapping (Subburayalu & Slater, 2013).

Random forest, a machine learning algorithm, creates an

ensemble of decision trees using a random subset of obser-

vations and covariates to prevent the overfitting issues com-

mon in other decision tree algorithms and is particularly well-

suited for handling multicollinearities (Grimm et al., 2008;

Guio Blanco et al., 2018). However, both GWR and RF are

seldom used for variable-rate application scales. Hence, a

study that specifically compares these interpolation methods

at in-field scales is important for evaluating the utility of these

techniques for precision agriculture applications.

Global error measures, or metrics that summarize the error

rate across the entire field, can be used to quantify inter-

polation accuracy and are available when interpolating via

RF, GWR, and other spatial regression algorithms. This case

study compared GWR and RF, two methods with comparable

error metrics and covariates, with inverse distance weighting

(IDW). Inverse distance weighting is a common interpolation

method among farmers and their consultants and is used in

agricultural software programs such as SMS (Ag Leader) and

Trimble Ag Software (Trimble Inc.). Kriging was not consid-

ered in this study because the data did not meet the assump-

tions of stationarity (Hengl, 2009).

Quantifying error estimates of different interpolation tech-

niques will help farmers and their consultants select the appro-

priate technique for variable-rate fertilizer applications. The

objective was to compare three different interpolation tech-

niques (GWR, RF, and IDW) on six fields in Ohio, to demon-

strate as a case study, the importance of evaluating multiple

interpolation techniques. Maps were compared visually and

on the basis of the global error rate. Non-interpolated grid soil

sampling maps were also included in the comparisons.

2 METHODS FOR SAMPLING STP

2.1 Sites

Within Ohio, two fields were sampled in 2017 and four fields

were sampled in 2018, for a total of six site–years, prior

to planting soybean [Glycine max (L.) Merr.]. Fields ranged

Core Ideas
∙ The field area with low soil test P (STP) varied

among interpolation methods.

∙ Geographically weighted regression identified

more low-STP areas than random forest.

∙ Inverse distance weighting was sensitive to outlier

STP values.

from 44.5 to 116.1 acres. Site–years were denoted by location

within the state (C = central, W = western, S = southern, and

NW = northwestern) and year (17 = 2017 and 18 = 2018).

Site descriptions are provided in Table 1. Cooperating farmers

managed the fields according to standard practices. Soil sam-

pling points were laid out in an even grid, where each grid

cell was 0.50 acre in size and had one sampling location at

its center. Small grid size is a practice being promoted within

the industry (Integrated Ag Services, 2020). Within 10 ft of

each grid point, three soil cores (8 inches deep and 0.75 inches

wide) were collected (Culman et al., 2020). Cores from the

same grid point were mixed and air-dried. Soil samples were

analyzed for STP with a Mehlich-3 extractant (North-Central

Regional Committee for Soil Testing and Plant Analysis-13,

2015).

The soil test results were mapped without interpolation,

with an individual soil test result being used to represent the

fertility level within the boundaries of each grid cell (see the

example shown in Figure 1). Non-interpolated grid maps were

compared with the maps derived via the three interpolations

methods (GWR, RF, and IDW).

2.2 Interpolating STP

Digital elevation models (2.5 ft resolution) were downloaded

from the Ohio Geographically Referenced Information Pro-

gram database (Ohio Office of Information Technology,

2018) to generate the following terrain attributes for each field

in SAGA GIS (Conrad et al., 2015): slope, aspect, relative

slope position (scaled from 0 to 1), and topographic wetness

T A B L E A Useful conversions

To convert
Column 1 to
Column 2,
multiply by

Column 1
suggested
unit

Column 2 SI
unit

0.405 acre ha

2.54 inches cm

1 ppm mg kg–1
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T A B L E 1 Site descriptions including soil taxonomic class and soil test values for organic matter (OM), pH, and soil test P (STP), with ranges

shown in parentheses. Site–year names are generated from the year (2017 or 2018) and region (C, central Ohio; N, northern Ohio; W, west and

central Ohio; S, southern Ohio; NW, northwest Ohio)

Site–year Field size Soil taxonomic class pH median OM median STP median
acre % ppm

C17 49 Fine, illitic, mesic Aeric

Epiaqualfs

6.4(5.4–7.7) 3.4(2.3–6.2) 25(10–622)

C18 116 Fine, mixed, active, mesic Typic

Argiaquolls

6.5(5.4–7.9) 3.8(2.1–5.7) 25(6–237)

W17 59 Fine, mixed, active, mesic Aeric

Epiaqualfs

6.0(4.8–7.6) 3.2(2.1–4.7) 21(5–107)

W18 44 Fine, mixed, active, mesic Aquic

Hapludalfs

6.8(5.1–7.9) 2.4(1.8–4.6) 28(5–236)

NW18 77 Fine, illitic, nonacid, mesic

Typic Endoaquepts

6.8(5.9–7.9) 3.8(2.7–5.3) 101(28–196)

S18 124 Fine, mixed, superactive, mesic

Typic Argiaquolls

7.2(5.2–8.2) 3.0(1.5–5.6) 23(4–270)

F I G U R E 1 Soil test P level without interpolation for site NW18, shown as an example. The field was split into approximately 0.5-acre grid

cells, and a soil sample taken near the center (black dots in the figure) was used to represent the fertility of the entire cell. ppm, parts per million

index. Terrain attributes were used as covariates in the GWR

and RF models.

Geographically weighted regressions were run in SAGA

GIS according to the procedures detailed in Matcham et al.

(2020) with a Guassian kernel and bandwidth = 1. Random

forest models were built by the package randomForest within

R (3.4.2) with the parameters ntree= 500 and mtry= 2, which

are the values recommended by the package for a dataset of

our size (Liaw & Wiener, 2002). For RF model evaluation,

the use of out-of-bag error estimates has the same accuracy

as the use of a testing dataset that is the same size as the train-

ing dataset (Breiman, 2001). Out-of-bag error estimates were

calculated using randomForest and were used for RMSE cal-

culations. The RMSE summarized the error for each field and

was calculated from the soil test results of soil sampling and

the estimated soil test results of interpolation at each soil sam-

pling location. The RMSE was calculated for the GWR and

RF interpolations by the package Metrics for RF and GWR

interpolations (Hamner et al., 2018).

Inverse distance weighting interpolation was performed by

SAGA GIS with the minimum number of points being one

and a maximum of 20 for all sites (Conrad et al., 2015). The

weighting function for inverse distance was to a power of two.

The RMSE was not calculated for IDW interpolations because
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F I G U R E 2 Interpolated soil test P (STP) maps using random forest, geographically weighted regression, and inverse distance weighting

methods at three site–years in central and south-central Ohio. The critical level [20 parts per million (ppm)] and maintenance range (20–40 ppm) are

defined in the Tri-State fertilizer recommendations (Culman et al., 2020). Field portions below the critical level are likely to have crop yields limited

by low STP levels

the predicted STP value would have matched the observed

STP value, resulting in a RMSE value of zero.

3 COMPARISON OF INTERPOLATED
STP MAPS

In four out of six site–years, the RMSE of STP was lowest

for the GWR method (Figure 2, Figure 3). The RMSE for RF

interpolations may have been higher, since RF minimizes the

overall error rates without considering the error at the subfield

scale, and RF is optimized to accurately predict the values that

are most represented in the dataset. The full range of soil fer-

tility levels or covariate values within the field may not have

been evenly represented by grid soil sampling, and RF can

have high error rates for unbalanced datasets (Subburayalu &

Slater, 2013). The impact of unbalanced datasets on RF esti-

mates seemed to override any potential improved handling of

multicollinearity in the RF estimates compared with the GWR

estimates.

Across site–years, RF and GWR identified similar areas

that were within the maintenance range for STP [20 to

40 parts per million (ppm) Mehlich-3 P] (Culman et al., 2020)

(Figure 2, Figure 3). Inverse distance weighting predicted a

wider range of soil fertility levels across fields than the other

interpolation methods and predicted less of each field to be

within the STP maintenance range. However, GWR identified

a lower proportion of the field as falling above the mainte-

nance range than RF or IDW at site–years C18, W17, W18,

and S18.

Inverse distance weighting identified more of the field as

being above the maintenance range than RF or GWR. A single

high-STP sample tended to increase the estimated STP over

a larger area of the field in IDW maps thn the GWR or RF

maps. Geographically weighted regression tended to smooth

over narrow portion of high STP.

The site–year C17 exhibited more differences between the

RF and GWR maps,probably because of the high RMSE of

both models at that site (Figure 2). The high RMSE and the

larger discrepancy between the interpolation methods at C17

could be a result of having relatively few sampling points

south of the tree patch. The IDW map at the C17 site was more

similar in average fertility level to the GWR map at this site

than the RF map (Figure 2). The NW18 site–year had min-

imal differences among the maps, probably because all soil

samples at NW18 were above the critical STP level (Figure 3).
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F I G U R E 3 Interpolated soil test P (STP) maps via random forest, geographically weighted regression, and inverse distance weighting methods

at three site–years in western and northwestern Ohio. The critical level [20 parts per million (ppm)] and maintenance range (20–40 ppm) are defined

in the Tri-State fertilizer recommendations (Culman et al., 2020). Field portions below the critical level are likely to have crop yields limited by low

STP levels

T A B L E 2 Area below the critical soil test P (STP) level of <20 parts per million based on random forest, geographically weighted regression,

inverse distance weighting, and noninterpolated grids. Site–years are denoted by location within the state (C, central; W, western; S, southern;

NW, northwestern) and year (17, 2017; 18, 2018)

Field area below the critical level

Site–year Field size Random forest
Geographically
weighted regression

Inverse distance
weighting Noninterpolated grid

acres

C18 116 9.4 12.4 24.2 35.6

W17 59 11.9 14.8 22.7 29.1

W18 44 0 3.2 1.5 7.7

S18 79 9.4 6.7 11.1 31.1

NW18 77 0 0 0 0

4 IMPLICATIONS FOR SOIL
PHOSPHORUS MANAGEMENT

When the STP is below the critical level of 20 ppm, P fer-

tilizer is recommended to build up the STP levels (Culman

et al., 2020). In our study, the field area below the critical

level varied among the soil interpolation methods and the

non-interpolation method (Table 2). Among the interpolation

methods, RF tended to result in the smallest amount of field

area below the critical level, whereas IDW tended to have

the largest amount of field area below the critical level. The

non-interpolated maps identified the greatest amount of field

area below the critical level, so applying P based on the non-

interpolated grid maps would maximize the per-field fertilizer
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application rate and minimize the risk of yield loss caused

by low STP limitations. However, over time, this method

may increase the environmental risk of phosphorous run-off

caused by high STP soils. Maps created with IDW were very

similar to the non-interpolated grid maps and skewed towards

higher P application recommendations. Additionally, maps

generated by IDW had larger sections of the field influenced

by individual high- or low-STP samples than GWR or RF.

5 RECOMMENDATIONS

Geographically weighted regression estimated more low-STP

areas of the field than RF and had a lower error, as measured

by RMSE, than RF for four of six site–years. Taken in combi-

nation, the low error, the limited sensitivity to individual high-

and low-STP values, and the ability to identify low-STP areas

suggest that GWR may often outperform RF and IDW and

be a reliable method of choice. However, GWR was not uni-

versally the error-minimizing method. We recommend com-

paring maps both visually and on the basis of RMSE before

applying fertilizer to improve decision-making by farmers and

other practitioners. Visual comparisons near environmentally

sensitive areas are particularly important when using IDW or

noninterpolated grid maps that may be biased by an individual

high- or low-STP sample and can help evaluate other interpo-

lation methods outside the scope of this paper, such as krig-

ing. Although grid soil sampling approaches can improve fer-

tilizer efficiency and farm profitability, our results show that

additional gains can be realized by validating the interpola-

tion methods when generating prescription fertilizer applica-

tion maps. Although this case study specifically focused on P

application maps, the implications of our findings can proba-

bly be extended to other nutrients managed in a variable rate

approach.
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