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A B S T R A C T

Estimating soil properties in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared
region (mid-DRIFTS) uses statistical modeling (chemometrics) to predict soil properties from spectra. Modeling
approaches can have major impacts on prediction accuracy. However, the impact of selecting best parameters for
an algorithm (tuning), to optimize non-linear models for predicting soil properties, is relatively unexplored in
the domain of soil sciences. This study aimed to evaluate the predictive performance of linear (partial least
squares, PLS) and non-linear (support vector machines, SVM) multivariate regression models in estimating soil
physical, chemical, and biological properties with mid-DRIFTS. We evaluated the impact of optimizing two
hyperparameters (epsilon and cost) based on the noise tolerance in the ε-insensitive loss function of SVM models
using two contrasting and diverse sets of soils, one from northern Tanzania (n= 533) and another one from USA
Midwest (n = 400). Regression models were trained on calibration sets (75%) and tested on independent va-
lidation sets (25%) separately for each dataset. Support vector machines outperformed PLS models for all tested
soil properties (clay, sand, pH, total organic carbon, and permanganate oxidizable carbon) in both datasets.
Tuning hyperparameters epsilon and cost maintained or improved prediction accuracy of SVM models based on
root mean squared errors of independent validation sets. Support vector machines tuned hyperparameters dif-
fered among soil properties and also for the same soil property in distinct datasets, suggesting the need for
parameterizing non-linear models for specific soil properties and datasets. Optimizing SVM regression models in
mid-DRIFTS improves prediction accuracy of soil properties and therefore will likely enable obtaining more
robust predictive outcomes even in datasets with diverse land uses, parent materials, and/or soil orders. We
recommend that tuning should be included as a routine step when using SVM for estimating soil properties.

1. Introduction

Multivariate modeling has mainstreamed diffuse reflectance in-
frared Fourier transform spectroscopy in the mid-infrared region (mid-
DRIFTS), transforming soil sciences by enabling high-throughput pre-
dictions of soil properties. The mid-DRIFTS technique, also known as
middle-infrared (MIR) spectroscopy or Fourier transform infrared
(FTIR) spectroscopy, differs from traditional laboratory approaches to
soil analysis (e.g., wet chemistry) in that outputs are predictions or
estimates derived from the statistical modeling of the complex

relationships between a reference soil property and the mid-infrared
spectrum of the same soil. An absorbance spectrum exhibits peaks that
represent absorption of infrared electromagnetic energy at frequencies
(cm−1) specific to the type and vibrational mode(s) of polar bonds of
organic and inorganic functional groups (Parikh et al, 2014; Nocita
et al, 2015). Most soil properties cannot be directly estimated from
specific peak measurements in mid-DRIFTS of neat soil samples
(Niemeyer et al., 1992) due to overlapping and overtone vibrations that
occur in mid-infrared frequencies (4000–400 cm−1) (Soriano-Disla
et al. 2014) or simply by the lack of peaks specific to those soil
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properties. Soil properties can be predicted, however, by multivariate
regression models that extract and model relevant information from the
spectra. These predictions rely on a spectral library that contains
measured soils data obtained from traditional analytic methods, but
after developing a model on a training dataset, and validating it with
acceptable errors on an independent test set, one can use the trained
model to perform predictions on new “unknown” soil samples. Given
the complexity of a soil mid-DRIFTS spectrum, which generally contain
more than a thousand spectral variables (e.g., 1650 variables in a
2 cm−1 spectrum ranging 4000–700 cm−1, without zero filing/inter-
polating variables), and whose individual peaks are not necessarily
directly associated with the soil property of interest, multivariate
models are often used to analyze soil spectra and generate quantitative
predictions of soil properties. The chemometrics component of the mid-
DRIFTS measurement process is indispensable and modeling ap-
proaches can strongly affect the predictive outcomes.

In predictive applications of soil mid-DRIFTS, chemometrics is
composed of two main steps: spectral treatments and multivariate re-
gression modeling. Mathematical spectral treatments are used to en-
hance spectral features and increase ability of models to extract vi-
brational information from the spectra (see e.g. Stenberg et al., 2010;
Gholizadeh et al., 2013 for more details on spectral treatments).
Whereas multivariate models use pre-treated spectral data to develop
calibrations based on known values of a given soil property and specific
spectral features. There are two classes of multivariate regression
models: linear and non-linear (Wehrens, 2011), and several model types
have been used to calibrate spectral data with measured soil data. For
example, partial least squares (PLS) is a widely used linear multivariate
regression model, a class of models that also includes multiple linear
regression and principal components regression. On the other hand,
support vector machines (SVM), random forests, and neural networks
are examples of non-linear multivariate regression models. In soil sci-
ences, these linear and/or non-linear models have been compared for
predictive accuracy (e.g. Souza et al., 2012; Kang et al., 2017; Jia et al.,
2017; Campbell et al., 2018), but in general non-linear models, espe-
cially SVM (Gholizadeh et al., 2013), have been underused. Moreover,
the previous limited comparisons of linear and non-linear multivariate
regression models in mid-DRIFTS have found variable results de-
pending on the soil property of interest and the soil sample set. Though
such variability in accuracy can in part reflect intrinsic soil character-
istics, it may also be due to differences in modeling approaches between
studies. Modeling choices of spectral treatments and model class/
parameterization can significantly compromise or even degrade pre-
dictive applications of mid-DRIFTS of soils.

Support vector machines regression is a supervised, nonparametric,
statistical learning technique (Vapnik, 1995), and it generally has
adequate balance between predictive accuracy and the ability to gen-
eralize trained models to unseen data (Gholizadeh et al., 2013). Ad-
vantages of SVM models are their ability to handle high-dimensional

multivariate spaces (Karatzoglou et al., 2006) and to deal with noisy
patterns and multi-modal class distributions of soil properties
(Gholizadeh et al., 2013). However, challenging analytical approaches
are that SVM models have different algorithms and optimizing (tuning)
parameters that can be specifically targeted to improve prediction
outcomes. This latter part has been less explored in soil sciences, and
information regarding specific SVM parameters to be used in these
models to optimize predictive outcomes for soil properties is lacking.
Support vector machines regression models have two main features that
can be optimized. First is the selection of the kernel function (algo-
rithm), and second the noise tolerance in the epsilon (ε)-insensitive loss
function for each kernel. Kernel functions return the inner product
between two points in a suitable feature space, thus defining a notion of
similarity in high-dimensional spaces (Karatzoglou et al., 2006). In SVM
regression, there are four main families of kernels: linear, polynomial,
radial, and sigmoid, and each kernel has its own optimization para-
meters, and potentially scenarios of suitability. A common optimization
parameter among most SVM kernels is the noise tolerance in the ε-in-
sensitive loss function.

A theoretical representation of how SVM models deal with the ε-
insensitive loss function is presented in Fig. 1. Generally, a typical
parameterization of the SVM function is to use the ε-insensitive error
function in which an ε = 0.1 corresponds to a value of 1 for the pe-
nalization or cost parameter (C) (Wehrens, 2011). However, this
parameter ε can be optimized based on the trade-off between the size of
ε (insensitivity zone) and C. Reducing the insensitivity zone will gen-
erally increase the size of C, i.e. the distance between points outside of
the insensitive zone to the limit of the insensitive zone. These optimum
parameters can be searched in a user-defined hyperparameteric range
using a cross-validated error grid (e.g., root mean squared error, RMSE)
to find the greatest prediction accuracy of a soil property of interest.
Information about the coefficients ε and C is virtually absent in SVM
parameter optimization in mid-DRIFTS of soils. As parameter optimi-
zation should lead to more accurate prediction outcomes, finding a
model composition that minimizes prediction errors is an important
step to increase robustness of soil analysis with mid-DRIFTS.

Existing implementations of SVM regression models generally treat
its parameters as user-defined inputs, but there is lack of information
about specific values to use when predicting soil properties with mid-
DRIFTS. Selecting specific kernel type and function parameters is
usually based on application-domain knowledge. In the case of soil
spectra, user-defined inputs might be specific for each soil property in a
given spectral library and differ among sample sets. Generating in-
formation about the optimization parameters allows users to compare
and possibly improve prediction performances using robust modeling
approaches. Once a valid kernel function and its optimization para-
meters have been selected, one can develop further predictions with
minimal additional computational cost. Therefore, the objective of this
study is to compare predictive performance of linear (PLS) and non-

Fig. 1. Theoretical representation of how support
vector machines models address the loss function
using an ε-intensive band. The soft margin loss set-
ting corresponds to a linear kernel of SVM, where
the cost (C) size of errors (ζ) is measured in a high-
dimensional space, and only errors larger than a cut-
off (ε) are taken into account. Image adapted from
Schölkopf and Smola (2002) with permission from
The MIT Press.
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linear (SVM) multivariate regression models in mid-DRIFTS of soils,
and to evaluate how SVM model parameters ε and C affect prediction
accuracy of soil physical, chemical, and biological properties (clay,
sand, pH, total organic carbon (TOC), and permanganate oxidizable C
(POXC)).

2. Methods

2.1. Soils and study areas

Two geographically distinct and edaphically diverse soil sample sets
were used for a comparative evaluation of parameter optimization of
SVM relative to PLS, from northern Tanzania (n = 533) and from USA
Midwest (n = 400) (Table 1).

In northeastern Tanzania, soils were sampled across a mountainous
landscape dominated by smallholder agriculture in Lushoto District,
Tanga Province. The study site is located in the Western Usambara
Mountains, a deeply dissected plateau that rises in a steep escarpment
from the surrounding Maasai Plains (Massawe et al., 2017). Soils are
developed on Precambian metamorphic parent material (intermediate
gneiss) (Appel et al., 1998). Depending on landscape position, Ultisols
generally occupy midslope and upperslope positions, while toeslope
and valley positions are a complex of Mollisols, Alfisols, Ultisols, In-
ceptisols, and Entisols (Massawe et al., 2017). A total of 67 fields from
23 farms were identified based on landscape position and management
intensity representative of East African highland smallholder systems
(Massawe et al., 2017; Winowiecki et al., 2016) to furnish a diverse set
of soils and soil properties. In February 2014, each field was sampled
with an auger at five within field locations at 0–20 cm, and three
randomly selected locations from those five were further sampled at
20–40 cm depth, for a total of n = 533 soil samples.

The 400 USA soil samples were selected from the National
Cooperative Soil Survey (NCSS, https://www.nrcs.usda.gov/wps/
portal/nrcs/main/soils/survey/) distributed over four different phy-
siographic regions of the USA Midwest: Glaciated Allegheny Plateau,
Unglaciated Allegheny Plateau, Till Plains, and Huron-Erie Lake Plains.
For each region, 100 samples were systematically selected from ar-
chived genetic horizons sampled by NCSS (1950–2012) to represent the
full range and distribution of the entire dataset within each physio-
graphic region. Legacy data is digitally available at https://
ncsslabdatamart.sc.egov.usda.gov/. Samples were assigned to a phy-
siographic region based on their county location, and samples from
counties containing two or more physiographic regions were excluded.

Additionally, only samples after 1966 were considered, as prior to that
year wet combustion (oxidation via the Walkley Black method) was
used to determine TOC.

2.2. Soil analysis

Soils from both regions (Tanzania and the USA) were analyzed for
soil particle size distribution (soil texture) using the pipet method
(method 3A1, Burt, 2011). The soil texture variables used in this study
were total sand (< 2.0 mm and>0.05 mm) and total clay
(< 0.002 mm). Total organic carbon was analyzed in Tanzania soils
using dry combustion-chromatography; and in the USA soils using dry
combustion-Dumas (method 6A2a, Burt, 2011). In soils without car-
bonates, total carbon was taken as total organic carbon, while in soils
with carbonates, inorganic carbon was determined separately by the
gasometric method (Dreimanis, 1962) and inorganic carbon content
subtracted from total carbon to yield total organic carbon. Carbonates
were not detected in Tanzania soils. Soil pH was measured in Tanzania
using a 1:2 soil:water mixture (v:v); and in the USA using a 1:1 soil:-
water mixture (v:v) (method 4C1a2a, Burt, 2011). In both soil sets,
permanganate oxidizable carbon (POXC, mg kg−1 soil) was measured
based on the methods of Weil et al. (2003) adapted by Culman et al.
(2012).

2.3. Sample preparation and instrument set-up for mid-DRIFTS

2.3.1 The Tanzania samples
Soil samples were air-dried and initially sieved to<2 mm for

standard laboratory analysis, while all samples analyzed using mid-
DRIFTS were ground to< 100 μm with an agate mortar and pestle,
according to procedures described in Terhoeven-Urselmans et al.
(2010). Soil samples were loaded in four replicate wells on aluminum
microtiter plates (A752-96, Bruker Optics, Karlsruhe) using a micro-
spatula to fill the 6-mm-diameter wells and level the soil. Soil mid-
DRIFT spectra were obtained using a FT- IR Tensor 27 with high-
throughput screening extension unit with robotic arm ([Twister Mi-
croplate Handler], Bruker Optics, Karlsruhe, Germany; illustrated in
Shepherd and Walsh, 2007). The detector was a liquid N2-cooled MCT
detector. Spectra were collected across 4000–602 cm−1 with a resolu-
tion of 4 cm−1. Background measurements of the first empty well were
taken before each single measurement to account for changes in tem-
perature and air humidity. Each one of the four replicate wells had 32
co-added scans, and the four spectra were averaged to account for
within-sample variability and differences in particle size and packing
density (Terhoeven-Urselmans, et al., 2010).

2.3.2 The USA samples
The samples from the soil survey were originally crushed and sieved

to< 2.0 mm and stored in an air-dried state. No further grinding was
performed for mid-DRIFTS (Deiss et al., 2019a). Before acquiring
spectra, soils were dried for> 48 h at 40 °C and at 12–14% relative
humidity. To analyze samples in the mid-DRIFTS instrument, 24-well
anodized aluminum plates were used. These plates hold 24 removable
polystyrene sample cups with a top circular opening area of 10 mm
diameter and 5.5 mL volume. The sample cups were loaded by initially
over-filling the cups with soil, then tapping the cup side gently thrice to
settle the soil into the cup, and finally smoothing the surface by
scraping excess soil with the narrow edge of a stainless-steel spatula.
The soil was not packed or compressed into the well other than by
tapping and scrapping to avoid artifacts of matrix density (Terhoeven-
Urselmans, et al., 2010).

Spectra from USA soils were obtained using an X,Y Autosampler
(Pike Technologies Inc., Madison, WI) coupled with a Nicolet iS50
spectrometer equipped with a diffuse reflectance accessory (Thermo
Fisher Scientific Inc., Waltham, MA). Potassium bromide (KBr) was
used for background spectrum collected at the beginning of each plate

Table 1
Summary statistics of measured soil properties of the USA Midwest and
Tanzania soil sets. Permanganate oxidizable carbon.

Clay Sand pH TOC POXC
% % % mg kg−1

USA Midwest
n 400 400 400 399 400
Min. 1 0 2.3 0.1 3
1st Qu. 17 8 4.9 0.3 102
Median 26 18 5.9 0.5 154
Mean 29 26 5.9 0.9 286
3rd Qu. 39 35 7.0 1.1 327
Max. 85 98 8.0 9.1 1412
Tanzania
n 533 533 335 533 532
Min. 21 1 4.5 0.6 7
1st Qu. 46 15 6.0 1.8 331
Median 55 20 6.6 2.4 507
Mean 54 22 6.4 2.4 522
3rd Qu. 62 26 6.9 2.9 684
Max. 91 58 7.8 6.1 1404

pH: 1:1 v/v soil:water. TOC: Total organic carbon. POXC: Permanganate oxi-
dizable carbon.
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reading (i.e., every 23 samples). All measurements were conducted
from 4000 to 400 cm−1, 4 cm−1 wavenumber resolution and with 24
co-added scans in absorbance mode. We further reduced the spectral
data to 4000–700 cm−1 to eliminate increased noise at the upfield
spectral boundary to conduct spectral analysis and predictions. For each
soil sample, four soil subsamples were measured with one spectral
reading per well (24 co-added scans each) to generate the spectral re-
plicates that were further averaged prior to qualitative analysis and
predictions. The spectral readings were randomly located within a
3 mm diameter in the central position of each well configured in
AutoPro™ software (Pike Technologies Inc., Madison, WI).

2.4. Spectra characterization

Characterization of absorbance (log R−1, where R is reflectance)
spectra was summarized using principal components analysis (PCA)
with spectra mean-centered by subtracting wavenumber-specific ab-
sorbance means (overall spectra) from each spectrum wavenumber-
specific absorbance (centering was done with R Package ‘base’, R Core
Team, 2016). We used the iterative NIPALS algorithm (Martens and
Naes, 1989) to derive the principal components (R package ‘chemo-
metrics’, Varmuza and Filzmoser, 2009). The first two principal com-
ponent scores and loadings were plotted to evaluate soil datasets
spectra PCA dispersion and wavenumber-specific PCA loadings dis-
tribution.

2.5. Spectral treatment and selection

Several spectral treatments were evaluated for ability to extract
vibrational information from the spectra, and increase model robust-
ness, accuracy, repeatability, and reproducibility (Stevens and Ramirez-
Lopez, 2015). Tested treatments were Savitzky–Golay smoothing and
derivative, GapSegment derivative, continuum-removal, detrend nor-
malization, standard normal variate, block scaling, and sum of squares
block weighting. Standard normal variate transformation (Fearn, 2008)
and detrend normalization were also tested in combination with fil-
tering (applied after Savitzky–Golay and Gap-Segment) (R package
‘prospectr’, Stevens and Ramirez-Lopez, 2015). Selected spectral treat-
ments specific for each soil property and soil set are described in Tables
2 and 3.

Models were trained on a representative calibration set (75% of the
dataset) selected using the Kennard–Stone sampling algorithm
(Kennard and Stone, 1969), specifically for each spectral treatment, to

explain ≥95% of the total variance and validated on the remaining
samples (25% of the dataset) (R package ‘prospectr’, Stevens and
Ramirez-Lopez, 2015). In the USA dataset, this selection process was
separately performed for each one of the four physiographic locations
(n = 100 each) for a final calibration set of n = 300 and validation set
of n = 100 (except TOC, calibration = 300 and validation n = 99). In
the Tanzania dataset, this selection process was done across all samples
maintaining the proportion 75% calibration set to 25% test set for all
soil properties.

Prior to modeling, spectral outliers were detected using absorbance
spectra considering orthogonal distance and score distance. Orthogonal
distance was between the true position of each data point and its pro-
jection in space of the first few principal components to explain ≥80%
of the total variance. Score distance was the projection of a sample to
the center of all sample projections (Wehrens, 2011). The final dataset
was constrained to a sample set with orthogonal distance<25 and
score distance< 6 for the USA dataset, and orthogonal distance<4
and score distance<6 for the Tanzania dataset. No outliers were ex-
cluded within these orthogonal distance and score distance ranges.

2.6. Prediction model calibration and independent validation

We trained PLS and SVM models with different algorithms on cali-
bration sets and these were subsequently tested on independent vali-
dation sets. For PLS, three algorithms were tested, including kernel,
SIMPLS, and classical orthogonal scores (R package ‘pls’, Mevik and
Wehrens, 2007). The number of latent vectors in PLS was determined
via 10-fold cross-validation (R package ‘chemometrics’, Varmuza and
Filzmoser, 2009). For SVM, four kernels (classes of algorithms in SVM)
were tested, including linear kernel, Gaussian Radial Basis Function
(RBF) kernel, polynomial kernel (second and third degrees), and hy-
perbolic tangent kernel (sigmoid) (R package ‘e1071’, Meyer et al.,
2015). A common configuration tested in all PLS algorithms was with
or without a scaling function. Pre-treated spectra were scaled or not
scaled for PLS by dividing centered wavenumber-specific absorbances
by their standard deviations (Mevik and Wehrens, 2007; Varmuza and
Filzmoser, 2009), whereas for SVM both pre-treated spectra and pre-
dictor were always scaled to zero mean and unit variance prior to ca-
libration (Meyer et al., 2015).

Best combination of spectral treatment and multivariate regression
model (PLS and SVM) were selected for each soil property and dataset
based on sequential criteria looking first at the lowest root mean
squared error (RMSEv), then greatest residual prediction deviation

Table 2
Partial least squares (PLS) spectral treatments and model configurations used to predict soil variables in datasets from USA and Tanzania (TZ) in diffuse reflectance
infrared Fourier transform spectroscopy (mid-DRIFTS).

Soil property Locate Spectral treatmenta Argumentsb Multivariate regression model detailsc

Algorithm Scaling Latent variables (LV)

Clay (%) USA S-G/DT DO 0, PO 1, SS 11 classical scaled 7 LV
TZ G-S/SNV DO 2, FL 11, SS 1 classical scaled 4 LV

Sand (%) USA S-G/SNV DO 0, PO 2, SS 11 classical scaled 8 LV
TZ G-S/DT DO 1, FL 11, SS 10 classical scaled 6 LV

pH USA S-G/SNV DO 0, PO 4, SS 11 classical scaled 7 LV
TZ S-G/SNV DO 1, PO 3, SS 11 simpls scaled 5 LV

TOC (%)d USA Absorbance (log reflectance−1) simpls non-scaled 6 LV
TZ S-G/DT DO 2, PO 4, SS 10 kernelpls scaled 2 LV

POXC (mg kg−1)d USA Movav FL 11 classical scaled 5 LV
TZ D DO 1 simpls scaled 1 LV

a Savitzky-Golay (S-G), Gap-Segment (G-S), Detrend (DT), Standard Normal Variate (SNV), and Moving Average filter (Movav). Absorbance (log reflectance−1)
was the spectral basis for all other pretreatments.

b Derivative orders (DO), segment sizes (SS), polynomial orders (PO), and filter length (FL).
c For PLS three algorithms were tested: the kernel, SIMPLS and the classical orthogonal scores.
d Modeling was conducted with logarithmic transformed data. Spectra was scaled or not by dividing centered wavenumber-specific absorbances by their standard

deviations. TOC: Total organic carbon. POXC: Permanganate oxidizable carbon.
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(RPDv), and then greatest coefficient of determination (R2
v) of the in-

dependent validation datasets. The RMSE is the difference between
observed values and the predicted values. The RPD is the standard
deviation of observed values divided by the RMSE. The RPD takes both
the prediction error and the variation of observed values into account,
providing a metric of model validity that is more objective for com-
parisons across evaluated properties and studies. The R2 is a measure of
how well observed outcomes are reproduced by the model, based on the
proportion of total variation explained by the model. The R2 also allow
comparison across evaluated properties and studies, but is highly de-
pendent on a property’s range of values.

To determine the wavenumber importance for each soil property
(i.e., main selected spectral variables), specific methods were used for
each multivariate regression model (PLS or SVM). For PLS, loadings
vectors of the first two latent variables were extracted from the PLS
models and plotted against the wavenumbers. Interpretation of this
method is that the more intense negative or positive loadings at specific
wavenumbers indicate more important wavenumbers for prediction
development. In the support vector machines (SVM) models, a recursive
feature elimination algorithm was used (R package ‘caret’, Kuhn, 2018).
This approach implements backward selection of predictors (wave-
numbers) based on predictor importance ranking from the first to the
least important wavenumbers. The recursive feature elimination was
processed using a 10-fold cross-validation with a 75% calibration set to
25% leave-group out cross-validation. For both PLS and SVM, the same
spectral pretreatment method selected to develop the prediction model
of each soil property was used to determine the wavenumber im-
portance.

2.7. Tuning support vector machines models

Support vector machines multivariate regression models perfor-
mance (accuracy) depends on selecting the kernel and setting the
parameters C and ε. To identify appropriate parameters, we first se-
lected the best kernel based on prediction accuracy using typically

implemented parameters in the ε-insensitive error function (with
ε = 0.1, a value of 1 for the penalization factor C, these are the default
parameters implemented in R package ‘e1071’), and then tested dif-
ferent parameters C and ε for the selected best performing kernel. For
all soil properties in both datasets, the Gaussian Radial Basis Function
(radial) was selected based on the best model performance
(i.e., < RMSE,>RPD, and>R2). After selecting the kernel, the best
combination of C and ε was searched using an error grid set on a hy-
perparameter range (C and ε) (R package ‘e1071’, Meyer et al., 2015).
We conducted preliminary tests to set the final range of tested para-
meters for each dataset, and selected ranges based on model perfor-
mance. We tested C up to 100 and ε up to 10. The final range of tested
parameters was set for C from 0 to 32 and ε from 0.001 to 1.0 for the
USA dataset and C from 0 to 32 and ε from 0.001 to 0.5 for the Tanzania
dataset. The grid search was conducted by a 10-fold cross validation,
and hyperparameters were selected based on the best model perfor-
mance (lowest RMSECV).

2.8. Data processing and statistical analyses

Data was processed and analyzed using R version 3.3.3 (R
Foundation for Statistical Computing, Vienna, Austria) using the
packages ‘chemometrics’ (Varmuza and Filzmoser, 2009), ‘Chemome-
tricsWithR’ (Wehrens, 2011), ‘e1071’ (Meyer et al., 2015), ‘pls’ (Mevik
and Wehrens, 2007), ‘prospectr’ (Stevens and Ramirez-Lopez, 2015),
and ‘stats’ (R Core Team, 2016).

3. Results

The two soil datasets evaluated in this study (USA and Tanzania)
entailed a wide range of soil physical, chemical, and biological prop-
erties (Table 1). The USA dataset had wider ranges for clay, sand, pH,
and TOC than Tanzania. Permanganate oxidizable carbon had more
similar ranges between the two datasets, but the distribution of values
across ranges differed as it can be observed by the quartiles, median,

Table 3
Classical support vector machines (SVM) and tuned SVM (tSVM) spectral treatments and model configurations used to predict soil properties in datasets from USA
and Tanzania (TZ) in diffuse reflectance infrared Fourier transform spectroscopy (mid-DRIFTS).

Soil property Locate Spectral treatmenta Argumentsb Model Multivariate regression model details c

cost (C) epsilon (ε) N vectors

Clay (%) USA DT – SVM 1.00 0.1 230
tSVM 4.78 0.001 298

TZ S-G/SNV DO 1, PO 1, SS 11 SVM 1.00 0.1 309
tSVM 2.14 0.001 400

Sand (%) USA S-G/SNV DO 0, PO 4, SS 11 SVM 1.00 0.1 231
tSVM 17.15 0.001 300

TZ G-S/DT DO 1, FL 11, SS 10 SVM 1.00 0.1 293
tSVM 4.29 0.001 399

pH USA S-G/SNV DO 0, PO 4, SS 11 SVM 1.00 0.1 250
tSVM 4.29 0.201 182

TZ G-S/DT DO 3, FL 11, SS 1 SVM 1.00 0.1 188
tSVM 2.14 0.001 250

TOC (%) USA S-G/SNV DO 0, PO 1, SS 11 SVM 1.00 0.1 157
tSVM 8.57 0.001 297

TZ G-S/DT DO 1, FL 11, SS 1 SVM 1.00 0.1 333
tSVM 2.14 0.201 281

POXC (mg kg−1) USA S-G/DT DO 0, PO 1, SS 11 SVM 1.00 0.1 188
tSVM 4.28 0.001 299

TZ G-S/DT DO 2, FL 11, SS 5 SVM 1.00 0.1 313
tSVM 1.07 0.201 242

a Savitzky-Golay (S-G), Gap-Segment (G-S), Derivative (D), Detrend (DT), and Standard Normal Variate (SNV).
b Absorbance was the spectral basis for all other pretreatments. Derivative orders (DO), segment sizes (SS), polynomial orders (PO), and filter length (FL).
c Four SVM kernels were tested: linear, polynomial (second and third degrees), radial basis and sigmoid. N vectors: number of support vectors. Spectra and

predictor were scaled to zero mean and unit variance prior to calibration. For all SVM and tSVM, kernel: radial. Gamma: 0.000587 (clay), 0.000594 (sand), 0.000587
(pH), 0.000146 (TOC), and 0.000596 (POXC). Range of tested parameters: C from 0 to 25 for both datasets. ε was from 0.001 to 0.5 in the Tanzania dataset and from
0.001 to 1.0 in the USA dataset. TOC: Total organic carbon. POXC: Permanganate oxidizable carbon.
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and mean POXC values (Table 1). The USA Midwest soil dataset had a
larger range of spectral variability than Tanzania soil dataset, as illu-
strated by the dispersion of PCA scores (Supplementary Fig. 1). The
PCA loading vectors (PC1 and PC2) had a distinct composition of
spectral features between the two datasets indicating that dataset-spe-
cific key wavenumbers were explaining most of the spectral variability
(Supplementary Fig. 2).

The main variation of user defined parameters in selected PLS
models across soil properties and datasets was the number of selected
latent variables, and these varied from one latent variable for POXC in
the Tanzania dataset to eight latent variables for sand in the USA da-
taset (Table 2). In general, most of the best performing PLS models were
obtained with the classical algorithm and scaled spectra. Exceptions in
which other algorithms achieved best predictions were for TOC using
the kernelpls algorithm and for POXC using the SIMPLS algorithm in the
Tanzania dataset, and for TOC using the SIMPLS algorithm and no
spectra scaling in the USA dataset. Non-tuned SVM models used fixed ε
and C parameters of 0.1 and 1.0 respectively. However, there was
variation across soil properties on the number of support vectors, which
varied from 157 support vectors for TOC in the USA dataset, to 333
support vectors for TOC in the Tanzania dataset.

The SVM models were optimized based on the parameters ε and C
using an error grid set on a specified hyperparameters range, as ex-
emplified for clay concentration from Tanzania soils (Fig. 2). For the
USA dataset, the selected parameter of C ranged from 4.28 to 17.15
across all measured soil properties and the selected parameter of ε was
generally 0.001, except for soil pH (ε = 0.201) (Table 3 and
Supplementary Fig. 3). The Tanzania dataset had C between 1.07 and
4.29 and ε ranging from 0.001 (clay and sand) to 0.201 (pH and POXC)
(Table 3 and Supplementary Fig. 4). In both datasets, tuning SVM in-
creased the number of support vectors, except for the tuned models
with larger ε (i.e., > 0.2) for which a lower number of support vectors
was obtained when compared to non-tuned SVM models.

The predictive response of SVM outperformed PLS for all soil
properties in both datasets, and the magnitude of improvement de-
pended on the soil property in each data set (Figs. 3 and 4, Tables 4 and
5). The SVM optimization of the parameters ε and C, searched using a
cross-validated error grid (RMSECV) set on a specified hyperparameters
range (Fig. 2, and Supplementary Figs. 3 and 4), maintained or im-
proved prediction accuracies when compared to non-tuned SVM
models, based on RMSEV, RPDV, and R2

V statistical coefficients of in-
dependent validation sets (Figs. 3 and 4, Tables 4 and 5). As hypothe-
sized, these optimized SVM models always improved model calibration

statistics.
The wavenumber importance was measured by different methods

for PLS or SVM (Fig. 5). Several similarities in wavenumber importance
existed between PLS and SVM, but each model exhibited distinct use of
wavenumbers depending on the soil property and dataset. For example,
in the Midwest USA dataset, prediction of clay content for both multi-
variate models (PLS and SVM) drew upon, among other regions or the
MIR, the downfield of the MIR (~4000–3777 cm−1). To our knowl-
edge, this region does not express absorbance features from soil func-
tional groups, and the importance could be related with the overall
spectra reflectiveness (absorbance values overall wavenumbers). The
importance of this region in both models was evidenced by (i) the in-
tense negative values of PLS latent variable (LV) loadings in LV1 and
(ii) the recursively selected important wavenumbers of SVM. The region
at 3700 cm−1 to 3200 cm−1 of the same spectrum was a positive
loading in the PLS LV1, and the same region is expressed in the SVM
models as important wavenumbers (darker tones). This spectral region
corresponds to the functional group O–H of hydroxyl stretching (kao-
linite and others) (3723–3686 cm−1, Russell, 1987) and Si–O functional
group of 2:1 layer aluminosilicates (3686–3565 cm−1, Nguyen et al.,
1991). Another similar behavior between the PLS LV1 loadings and
SVM important wavenumbers for clay in USA soils can be observed for
wavenumbers across 1400 cm−1 to 1200 cm−1, a region that contains
peaks of symmetric –COO– stretch and/or –CH bending of aliphatics.
An example of a poorly defined relationship between important regions
of PLS and SVM can be observed for TOC in the Tanzania dataset. The
frequencies between ~2600 cm−1 and 2400 cm−1 were considered
important for SVM but not so evidently for PLS, which had one of the
noisiest loading vectors distributions among all soil variables. This re-
gion corresponds to the functional group CO3 of calcite (peaks ranging
from 2650 to 2420 cm−1, Nguyen et al., 1991).

4. Discussion

Predicting soil properties with mid-DRIFTS has clearly demon-
strated potential, but many methodological decisions will impact pre-
dictive performance. Regardless of sample preparation and spectra ac-
quisition (Deiss et al., 2019b), chemometric modeling can have major
impacts on prediction accuracy. Soil measurements in mid-DRIFTS rely
on reference data from traditional analytic methods to calibrate models
for a specific set of soils, but can later facilitate estimation of soil
properties due to the reduced time, labor and costs associated with the
technique (Soriano-Disla et al., 2014; Nocita et al., 2015). Once re-
ference measured data is used to calibrate mid-DRIFTS models, the soil
measurements must be accurate, precise, and reproducible following
rigorous laboratory standards, so that calibrated models can be reliable.
After training and validating a model, predictions can be performed on
new soil samples using only the spectra, but these new samples must be
spectrally similar to the spectral library used during modeling. Im-
portant characteristics to be taken into consideration are edaphic
properties that can affect spectral features such as soil order, soil mi-
neralogy, soil property distribution (e.g., ranges and quartiles), soil
depth, and any other edaphic source of variation in a dataset. Potential
outliers can be detected based on spectral properties, for example, by
specifying a threshold on multidimensional spectral dispersions based
on Euclidean/Mahalanobis distances of a spectral matrix (e.g.,
Mirzaeitalarposhti et al., 2017).

In chemometrics, prediction accuracy will mostly depend on soil
properties that affect reflectance characteristics, and a combination of
spectral treatments and multivariate modeling. Spectral quality attri-
butes such as spatial resolution, signal-to-noise ratio, and presence of
spectral artifacts (Kimber and Kazarian, 2017) may also affect the data
analytical process. Our results showed that SVM outperformed PLS for
all predictions, and tuning SVM models maintained or improved ac-
curacy in relation to non-tuned SVM models (Figs. 3 and 4 and Tables 4
and 5). Each soil property predicted from both datasets had specific

Fig. 2. Hyperparameters search grid to optimize support vector machines re-
gression models predicting soil clay concentration in Tanzania soils from diffuse
reflectance infrared Fourier transform spectroscopy (mid-DRIFTS). The other
soil properties search grids are in Supplementary Figs. 3 and 4.
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spectral treatments, SVM model configurations, and tuning parameters
(Table 3, Fig. 2, and Supplementary Figs. 3 and 4), suggesting model
optimization is a soil property- and dataset-specific process that can
improve prediction accuracy of mid-DRIFTS.

During the SVM parameter optimization process, there was a trade-
off between the size of ε (insensitivity zone) and the penalty parameter

C (Table 3). Reducing the insensitivity zone increased the size of C for
most soil properties, and generally increased the number of support
vectors. This trade-off was expected based on the ε-insensitive loss
function behavior (Smola and Schölkopf, 2004). Values are expected to
be more distant from and/or out of the insensitive zone (greater C) by
decreasing the size of the sensitive zone (smaller ε) (Fig. 1). These

Fig. 3. USA Midwest soils scatter plots of measured versus predicted values using linear (partial least squares: PLS) and non-linear (SVM: support vector machines
and tSVM: tuned SVM) multivariate regression models in diffuse reflectance infrared Fourier transform spectroscopy (mid-DRIFTS). Regression models were trained
on calibration sets (75% of dataset) and tested on independent validation sets (25% of dataset). TOC: Total organic carbon. POXC: Permanganate oxidizable carbon.
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optimum parameters (ε and C) were searched using a cross-validated
error grid (RMSECV) set on a specified hyperparameters range (Fig. 2,
and Supplementary Figs. 3 and 4), and this may be an effective ap-
proach to identify optimum parameters for SVM to develop predictions
of soil properties using mid-DRIFTS, once prediction accuracy was often

improved (Figs. 3 and 4 and Tables 4 and 5). When the ε was increased
in relation to non-tuned SVM (i.e., pH in the USA dataset and TOC in
the Tanzania dataset) (Table 3), the numbers of support vectors were
reduced revealing another potential trade off of SVM optimization. The
number of support vectors indicates the number of training samples to

Fig. 4. Tanzania soils scatter plots of measured versus predicted values using linear (partial least squares: PLS) and non-linear (SVM: support vector machines and
tSVM: tuned SVM) multivariate regression models in diffuse reflectance infrared Fourier transform spectroscopy (mid-DRIFTS). Regression models were trained on
calibration sets (75% of dataset) and tested on independent validation sets (25% of dataset). TOC: Total organic carbon. POXC: Permanganate oxidizable carbon.
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encode the calibration set, and reducing the number of support vectors
minimize chances of model over-fitting. Moreover, increasing the
number of support vectors can add significant amount of time while
modeling and/or running predictions. However, this additional time
can be beneficial if the prediction accuracy is improved.

Setting guidelines on SVM regression parameterization is important
because these parameters are user-defined inputs and there is lack of
information about specific values to use when predicting soil properties
with mid-DRIFTS. To our knowledge, this is the first use of SVM re-
gression tuning to enhance prediction of soil properties from mid-
DRIFTS. Grid search for hyperparameters has been used in near-in-
frared spectroscopy and other soil applications non-related to spectro-
scopy. Predicting TOC with near-infrared spectroscopy and SVM, Chen
et al. (2015) tested the effect of tuning other SVM parameters (gamma
and sigma), different than those included in our study (ε and C). Opti-
mizing SVM using grid search for gamma and sigma improved accuracy
of TOC predictions (6.6% reduction of RMSEV) (Chen et al., 2015). Grid
search has also been used in other soil applications beyond infrared
spectroscopy such as prediction of soil pore-water pressure, soil heavy
metal concentrations, and soil water retention potential (Mirhosseini,
2017; Babangida et al., 2016; Wu et al., 2016; Khlosi et al., 2016).

Optimizing chemometrics in mid-DRIFTS allows better extracting
information from spectra to more accurately predict soil physical,
chemical, and biological properties. However, modeling is susceptible
to generating meaningless outputs and non-linear models can be easily
over-fitted. Chemometrics is generally a naive modeling approach be-
cause the procedure does not systematically consider specific peaks in
the input spectra if users do not assign weights to wavenumbers or
truncate spectra. These models identify frequencies (wavenumbers) of
the spectrum that are more related to the variation of a certain soil
property, regardless of the kind of soil organic or inorganic functional
group corresponding to the wavenumbers, and use these wavenumbers
to predict the soil property. Adding to that, some properties can be
totally or partially predicted in multivariate models because of their
correlation or covariation with other soil properties (Chang et al., 2001;
Stenberg et al., 2010, Reeves, 2010). We found that PLS and SVM did
not necessarily use the same wavenumbers to develop predictions for
each soil property, and there were occasions where these most im-
portant wavenumbers did not directly relate to the property of interest
(Fig. 5). For example, both PLS and SVM predictions drew upon the
downfield region of the MIR (~4000–3777 cm−1), but this region does
not have specified peaks defined by soil functional groups (e.g.,

Table 4
Prediction performance of USA Midwest soils using linear (partial least squares: PLS) and non-linear (SVM: support vector machines and tSVM: tuned SVM)
multivariate regression models in diffuse reflectance infrared Fourier transform spectroscopy (mid-DRIFTS).

Soil property Model Calibration set (75% of dataset) Validation set (25% of dataset)

RMSE RPD R2 RMSEV RPDV R2
V

Clay (%) (n = 400) PLS 7.27 1.81 0.81 4.58 2.38 0.82
SVM 5.36 2.72 0.89 3.81 2.77 0.87
tSVM 3.21 5.04 0.96 3.22 3.31 0.91

Sand (%) (n = 400) PLS 9.66 1.87 0.85 7.70 2.02 0.75
SVM 7.97 2.82 0.90 7.45 1.59 0.76
tSVM 1.00 25.0 0.99 5.24 2.54 0.87

pH (n = 400) PLS 0.54 1.77 0.77 0.44 2.27 0.80
SVM 0.40 2.44 0.87 0.40 2.33 0.84
tSVM 0.28 3.62 0.94 0.36 2.53 087

TOC (%) (n = 399) PLSa 0.50 2.49 0.82 0.29 2.42 0.85
SVM 0.51 1.76 0.81 0.18 3.69 0.93
tSVM 0.22 5.03 0.96 0.19 3.60 0.93

POXC (mg kg−1) (n = 400) PLSa 207 1.47 0.56 123 1.25 0.74
SVM 122 2.10 0.84 69 3.64 0.93
tSVM 89 3.32 0.92 74 3.79 0.92

a Statistical coefficients were determined on logarithmic back-transformed data. RMSE: root mean squared error, RPD: residual prediction deviation, and R2:
coefficient of determination. TOC: Total organic carbon. POXC: Permanganate oxidizable carbon.

Table 5
Prediction performance of Tanzania soils using linear (partial least squares: PLS) and non-linear (SVM: support vector machines and tSVM: tuned SVM) multivariate
regression models in diffuse reflectance infrared Fourier transform spectroscopy (mid-DRIFTS).

Soil property Model Calibration set (75% of dataset) Validation set (25% of dataset)

RMSE RPD R2 RMSEV RPDV R2
V

Clay (%) (n = 533) PLS 5.26 1.97 0.84 5.18 2.13 0.78
SVM 4.02 2.98 0.90 4.58 2.13 0.81
tSVM 3.24 3.88 0.94 4.66 2.15 0.81

Sand (%) (n = 533) PLS 3.95 1.95 0.81 3.4 2.31 0.81
SVM 2.87 2.83 0.90 2.73 2.70 0.88
tSVM 2.00 4.36 0.95 2.83 2.79 0.87

pH (n = 335) PLS 0.28 1.68 0.82 0.21 2.80 0.87
SVM 0.20 3.04 0.91 0.13 4.10 0.94
tSVM 0.16 4.14 0.94 0.13 4.41 0.95

TOC (%) (n = 533) PLSa 0.72 0.74 0.35 0.86 0.53 0.13
SVM 0.56 1.25 0.64 0.59 1.03 0.54
tSVM 0.50 1.52 0.71 0.56 1.13 0.57

POXC (mg kg−1) (n = 532) PLSa 494 0.38 0.40 165 1.10 0.46
SVM 133 1.62 0.73 88 2.19 0.84
tSVM 132 1.61 0.73 89 2.18 0.84

a Statistical coefficients were determined on logarithmic back-transformed data. RMSE: root mean squared error, RPD: residual prediction deviation, and R2:
coefficient of determination. TOC: Total organic carbon. POXC: Permanganate oxidizable carbon.

L. Deiss, et al. Geoderma 365 (2020) 114227

9



Kodama, 1985; Parikh et al., 2014). Moreover, the relatively high
number of support vectors in relation to the size of the calibration set
(Table 3) and sand calibration statistical outcomes in the USA dataset
(Table 4) indicates that the datasets can still be broadened to cover a
greater extent of the soil spectra variability to reduce over-fitting and
increase robustness of those tuned models to develop predictions to new
samples. For these reasons, independent validation sets are indis-
pensable; once kernel models are sensitive to over-fitting (Ali et al.,
2015) and potentially do not translate predictive prediction accuracy
from the calibration sets to independent test sets or new samples.

Several multivariate regression models have been used to predict
soil properties in mid-DRIFTS. However, there is no consensus on what

model class improves accuracy when measuring soil properties. At same
time, this does not imply that a single modeling approach will work in
every particular case or even as a universal model class, but finding
ways to chemometrically deal with complex soil spectra may allow
improving prediction robustness in mid-DRIFTS of soils. Partial least
squares models are generally easier to derive and interpret (e.g., PLS LV
loadings), and are insensitive to colinearity (Haaland and Thomas,
1988; Gholizadeh et al., 2013). On the other hand, non-linear multi-
variate regression methods can be complex to interpret (Soriano-Disla
et al. 2014) and they are not always available in commercially available
spectral processing software. Previous multivariate regression models
comparisons in mid-DRIFTS of soils have shown variable responses for

Fig. 5. Wavenumber importance of support vector
machines (SVM) regression models determined by
recursive feature selection (grey scale) and the first
two latent variables loading vectors (LV1 and LV2) of
partial least squares (PLS) regression models in dif-
fuse reflectance infrared Fourier transform spectro-
scopy (mid-DRIFTS). Soils were from USA Midwest
and Tanzania. TOC: Total organic carbon. POXC:
Permanganate oxidizable carbon. One latent variable
was used for POXC in the Tanzania dataset and thus
they have only the LV1 line. In the Tanzania dataset,
TOC PLS models used a different algorithm (ker-
nelpls) than the other soil properties/datasets (clas-
sical or simpls algorithms), and the loadings were
magnified 5 times so they were in a comparable scale
to the other loading vectors.
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different datasets and soil properties. Comparing multivariate regres-
sion models in soils from the Ribeirão Inhaúma basin, Brazil (n = 184),
Campbell et al. (2018) obtained greater prediction accuracies with PLS
for TOC and Mehlich-1 extractable phosphorus whereas SVM performed
better for clay. Jia et al. (2017) obtained greater accuracy with SVM
when compared to PLS predicting TOC in soils from an alpine landscape
on the Qinghai–Tibet Plateau (n = 330). In oak forest soils across East
China (n = 140), Kang et al. (2017) found that SVM has similar or
better prediction than PLS for several organic carbon compounds.
Comparing two non-linear models in representative soil profiles from
Brazil (n = 1117 from 367 soil profiles), Souza et al. (2012) obtained
greater prediction performances for total organic matter using SVM
than neural networks. In most cases, non-linear models such as SVM or
neural networks performed better than or comparable to linear models
including PLS. Less commonly, better prediction performances were
obtained with linear than non-linear models. Finding non-linearities in
the relationship between spectral characteristics and soil properties
distributions is expected for heterogeneous, edaphically diverse soil sets
(e.g., Calderón et al., 2017). There is a wide variability of soil re-
flectance patterns in mid-infrared frequencies of the spectrum and that
could be benefiting non-linear models in these predictions.

Support vector machines regression models have been underused
compared to PLS models (Viscarra-Rossel et al., 2006; Gholizadeh et al.,
2013) but the emergence of SVM tuning stands to increase the utility of
this chemometric approach. Tuning SVM models will add more com-
putational demand and time to the modeling process depending on
dataset characteristics (e.g., spectral resolution and number of sam-
ples), number of support vectors, and/or cross-validation configura-
tions. Support vector machines regression model tuning should be done
for each soil property after selecting an optimal spectral treatment and
a SVM kernel. While this may require a greater initial investment in
model development, once optimal parameters have been found similar
time and computational demand can be expected as in non-tuned SVM
models, presenting a worthwhile investment that can improve predic-
tion accuracy. These parameters are user defined inputs and can be
specified, a priori, when developing predictions for new samples.
Tuning SVM can also be done for other parameters such as gamma and
sigma (e.g., Chen et al., 2015), and more research is needed to fully vet
SVM models parameterization for mid-DRIFTS soil analysis.

5. Conclusion

Optimizing chemometric models by curating each prediction based
on the combination of spectral treatments, model selection and con-
figurations, and tuning parameters may improve prediction accuracy of
mid-DRIFTS to predict soil properties. Non-linear models (support
vector machines) outperformed linear models (partial least squares) for
all tested soil properties (sand, clay, pH, TOC, POXC) in soils from both
Tanzania and USA Midwest. Specific spectral treatments were used for
each prediction, and the Gaussian Radial Basis Function (radial) was
the most accurate kernel in support vector machines regression models.
Tuning support vector machines models based on the parameters C and
ε maintained or improved accuracy in relation to non-tuned support
vector machines models. Therefore, tuned support vector machines
regression models may be used as a way to derive predictions from the
complex relationships between a soil property and the mid-infrared
spectrum. Vetting modeling strategies in mid-DRIFTS allows better
using information from spectra to more accurately predict soil physical,
chemical, and biological properties.
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