Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy

Leonardo Deiss⁎,1, Andrew J. Margenotb,2, Steve W. Culmanc,3, M. Scott Demyand,4

a School of Environment and Natural Resources, The Ohio State University, 414A, Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
b Crop Sciences Department, University of Illinois Urbana-Champaign, 1201 S Dorner Dr, Urbana, IL 61801, USA
c School of Environment and Natural Resources, The Ohio State University, 1680, Madison Ave, Wooster, OH 44691, USA
d School of Environment and Natural Resources, The Ohio State University, 408B, Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA

ARTICLE INFO
Handling Editor: Alex McBratney
Keywords:
Machine-learning
Kernel
Error-grid
FTIR
RMSE

ABSTRACT
Estimating soil properties in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS) uses statistical modeling (chemometrics) to predict soil properties from spectra. Modeling approaches can have major impacts on prediction accuracy. However, the impact of selecting best parameters for an algorithm (tuning), to optimize non-linear models for predicting soil properties, is relatively unexplored in the domain of soil sciences. This study aimed to evaluate the predictive performance of linear (partial least squares, PLS) and non-linear (support vector machines, SVM) multivariate regression models in estimating soil physical, chemical, and biological properties with mid-DRIFTS. We evaluated the impact of optimizing two hyperparameters (epsilon and cost) based on the noise tolerance in the ε-insensitive loss function of SVM models using two contrasting and diverse sets of soils, one from northern Tanzania (n = 533) and another one from USA Midwest (n = 400). Regression models were trained on calibration sets (75%) and tested on independent validation sets (25%) separately for each dataset. Support vector machines outperformed PLS models for all tested soil properties (clay, sand, pH, total organic carbon, and permanganate oxidizable carbon) in both datasets. Tuning hyperparameters epsilon and cost maintained or improved prediction accuracy of SVM models based on root mean squared errors of independent validation sets. Support vector machines tuned hyperparameters differently among soil properties and also for the same soil property in distinct datasets, suggesting the need for parameterizing non-linear models for specific soil properties and datasets. Optimizing SVM regression models in mid-DRIFTS improves prediction accuracy of soil properties and therefore will likely enable obtaining more robust predictive outcomes even in datasets with diverse land uses, parent materials, and/or soil orders. We recommend that tuning should be included as a routine step when using SVM for estimating soil properties.

1. Introduction
Multivariate modeling has mainstreamed diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS), transforming soil sciences by enabling high-throughput predictions of soil properties. The mid-DRIFTS technique, also known as middle-infrared (MIR) spectroscopy or Fourier transform infrared (FTIR) spectroscopy, differs from traditional laboratory approaches to soil analysis (e.g., wet chemistry) in that outputs are predictions or estimates derived from the statistical modeling of the complex relationships between a reference soil property and the mid-infrared spectrum of the same soil. An absorbance spectrum exhibits peaks that represent absorption of infrared electromagnetic energy at frequencies (cm⁻¹) specific to the type and vibrational mode(s) of polar bonds of organic and inorganic functional groups (Parikh et al, 2014; Nocita et al, 2015). Most soil properties cannot be directly estimated from specific peak measurements in mid-DRIFTS of neat soil samples (Niemeyer et al., 1992) due to overlapping and overtone vibrations that occur in mid-infrared frequencies (4000–400 cm⁻¹) (Soriano-Disla et al. 2014) or simply by the lack of peaks specific to those soil
The advantages of SVM models are their ability to handle high-dimensional properties. Soil properties can be predicted, however, by multivariate regression models that extract and model relevant information from the spectra. These predictions rely on a spectral library that contains measured soils data obtained from traditional analytic methods, but after developing a model on a training dataset, and validating it with acceptable errors on an independent test set, one can use the trained model to perform predictions on new “unknown” soil samples. Given the complexity of a soil mid-DRIFTS spectrum, which generally contain more than a thousand spectral variables (e.g., 1650 variables in a 2 cm$^{-1}$ spectrum ranging 4000–700 cm$^{-1}$, without zero filling/interpolating variables), and whose individual peaks are not necessarily directly associated with the soil property of interest, multivariate models are often used to analyze soil spectra and generate quantitative predictions of soil properties. The chemometrics component of the mid-DRIFTS measurement process is indispensable and modeling approaches can strongly affect the predictive outcomes.

In predictive applications of soil mid-DRIFTS, chemometrics is composed of two main steps: spectral treatments and multivariate regression modeling. Mathematical spectral treatments are used to enhance spectral features and increase ability of models to extract vibrational information from the spectra (see e.g. Stenberg et al., 2010; Gholizadeh et al., 2013 for more details on spectral treatments). Whereas multivariate models use pre-treated spectral data to develop calibrations based on known values of a given soil property and specific spectral features. There are two classes of multivariate regression models: linear and non-linear (Wehrens, 2011), and several model types have been used to calibrate spectral data with measured soil data. For example, partial least squares (PLS) is a widely used linear multivariate regression model, a class of models that also includes multiple linear regression and principal components regression. On the other hand, support vector machines (SVM) use optimized parameters that can be searched in a user-defined hyperparameteric range (insensitivity zone) and the greatest prediction accuracy of a soil property of interest. Theoretical representation of how SVM models deal with the ε-insensitive loss function is presented in Fig. 1. Generally, a typical parameterization of the SVM function is to use the ε-insensitive error function in which an $\varepsilon = 0.1$ corresponds to a value of 1 for the penalization or cost parameter (C) (Wehrens, 2011). However, this parameter ε can be optimized based on the trade-off between the size of ε (insensitivity zone) and C. Reducing the insensitivity zone will generally increase the size of C, i.e. the distance between points outside of the insensitive zone to the limit of the insensitive zone. These optimum parameters can be searched in a user-defined hyperparameteric range using a cross-validated error grid (e.g., root mean squared error, RMSE) to find the greatest prediction accuracy of a soil property of interest. Information about the coefficients ε and C is virtually absent in SVM parameter optimization in mid-DRIFTS of soils. As parameter optimization should lead to more accurate prediction outcomes, finding a model composition that minimizes prediction errors is an important step to increase robustness of soil analysis with mid-DRIFTS.

Support vector machines regression is a supervised, nonparametric, statistical learning technique (Vapnik, 1995), and it generally has adequate balance between predictive accuracy and the ability to generalize trained models to unseen data (Gholizadeh et al., 2013). Advantages of SVM models are their ability to handle high-dimensional multivariate spaces (Karatzoglou et al., 2006) and to deal with noisy patterns and multi-modal class distributions of soil properties (Gholizadeh et al., 2013). However, challenging analytical approaches are that SVM models have different algorithms and optimizing (tuning) parameters that can be specifically targeted to improve prediction outcomes. This latter part has been less explored in soil sciences, and information regarding specific SVM parameters to be used in these models to optimize predictive outcomes for soil properties is lacking. Support vector machines regression models have two main features that can be optimized. First is the selection of the kernel function (algorithm), and second the noise tolerance in the epsilon (ε)-insensitive loss function for each kernel. Kernel functions return the inner product between two points in a suitable feature space, thus defining a notion of similarity in high-dimensional spaces (Karatzoglou et al., 2006). In SVM regression, there are four main families of kernels: linear, polynomial, radial, and sigmoid, and each kernel has its own optimization parameters, and potentially scenarios of suitability. A common optimization parameter among most SVM kernels is the noise tolerance in the ε-insensitive loss function.

A theoretical representation of how SVM models deal with the ε-insensitive loss function is presented in Fig. 1. Generally, a typical parameterization of the SVM function is to use the ε-insensitive error function in which an $\varepsilon = 0.1$ corresponds to a value of 1 for the penalization or cost parameter (C) (Wehrens, 2011). However, this parameter ε can be optimized based on the trade-off between the size of ε (insensitivity zone) and C. Reducing the insensitivity zone will generally increase the size of C, i.e. the distance between points outside of the insensitive zone to the limit of the insensitive zone. These optimum parameters can be searched in a user-defined hyperparameteric range using a cross-validated error grid (e.g., root mean squared error, RMSE) to find the greatest prediction accuracy of a soil property of interest. Information about the coefficients ε and C is virtually absent in SVM parameter optimization in mid-DRIFTS of soils. As parameter optimization should lead to more accurate prediction outcomes, finding a model composition that minimizes prediction errors is an important step to increase robustness of soil analysis with mid-DRIFTS.

Existing implementations of SVM regression models generally treat its parameters as user-defined inputs, but there is lack of information about specific values to use when predicting soil properties with mid-DRIFTS. Selecting specific kernel type and function parameters is usually based on application-domain knowledge. In the case of soil spectra, user-defined inputs might be specific for each soil property in a given spectral library and differ among sample sets. Generating information about the optimization parameters allows users to compare and possibly improve prediction performances using robust modeling approaches. Once a valid kernel function and its optimization parameters have been selected, one can develop further predictions with minimal additional computational cost. Therefore, the objective of this study is to compare predictive performance of linear (PLS) and non-
linear (SVM) multivariate regression models in mid-DRIFTS of soils, and to evaluate how SVM model parameters ε and C affect prediction accuracy of soil physical, chemical, and biological properties (clay, sand, pH, total organic carbon (TOC), and permanganate oxidizable C (POXC)).

2. Methods

2.1. Soils and study areas

Two geographically distinct and edaphically diverse soil sample sets were used for a comparative evaluation of parameter optimization of SVM relative to PLS, from northern Tanzania (n = 533) and from USA Midwest (n = 400) (Table 1).

In northeastern Tanzania, soils were sampled across a mountainous landscape dominated by smallholder agriculture in Lushoto District, Tanga Province. The study site is located in the Western Usambara Mountains, a deeply dissected plateau that rises in a steep escarpment from the surrounding Maasai Plains (Massawe et al., 2017). Soils are developed on Precambrian metamorphic parent material (intermediate gneiss) (Appel et al., 1998). Depending on landscape position, Ultisols generally occupy midslope and upperslope positions, while toeslope gneiss) (Appel et al., 1998). Depending on landscape position, Ultisols generally occupy midslope and upperslope positions, while toeslope gneiss) (Appel et al., 1998). Depending on landscape position, Ultisols generally occupy midslope and upperslope positions, while toeslope

dumps in Tanzania and the USA were analyzed for soil particle size distribution (soil texture) using the pipet method (method 3A1, Burt, 2011). The soil texture variables used in this study were total sand (< 2.0 mm and > 0.05 mm) and total clay (< 0.002 mm). Total organic carbon was measured in Tanzania soils using dry combustion-chromatography; and in the USA soils using dry combustion-Dumas (method 6A2a, Burt, 2011). In soils without carbonates, total carbon was taken as total organic carbon, while in soils with carbonates, inorganic carbon was determined separately by the gasometric method (Dreimanis, 1962) and inorganic carbon content subtracted from total carbon to yield total organic carbon. Carbonates were not detected in Tanzania soils. Soil pH was measured in Tanzania using a 1:2 soil:water mixture (v:v); and in the USA using a 1:1 soil:water mixture (v:v) (method 4Cl2a, Burt, 2011). In both soil sets, permanganate oxidizable carbon (POXC, mg kg⁻¹ soil) was measured based on the methods of Weil et al. (2003) adapted by Culman et al. (2012).

2.2. Soil analysis

Soils from both regions (Tanzania and the USA) were analyzed for soil particle size distribution (soil texture) using the pipet method (method 3A1, Burt, 2011). The soil texture variables used in this study were total sand (< 2.0 mm and > 0.05 mm) and total clay (< 0.002 mm). Total organic carbon was measured in Tanzania soils using dry combustion-chromatography; and in the USA soils using dry combustion-Dumas (method 6A2a, Burt, 2011). In soils without carbonates, total carbon was taken as total organic carbon, while in soils with carbonates, inorganic carbon was determined separately by the gasometric method (Dreimanis, 1962) and inorganic carbon content subtracted from total carbon to yield total organic carbon. Carbonates were not detected in Tanzania soils. Soil pH was measured in Tanzania using a 1:2 soil:water mixture (v:v); and in the USA using a 1:1 soil:water mixture (v:v) (method 4Cl2a, Burt, 2011). In both soil sets, permanganate oxidizable carbon (POXC, mg kg⁻¹ soil) was measured based on the methods of Weil et al. (2003) adapted by Culman et al. (2012).

2.3. Sample preparation and instrument set-up for mid-DRIFTS

2.3.1 The Tanzania samples

Soil samples were air-dried and initially sieved to < 2 mm for standard laboratory analysis, while all samples analyzed using mid-DRIFTS were ground to < 100 μm with an agate mortar and pestle, according to procedures described in Terhoeven-Urselmans et al. (2010). Soil samples were loaded in four replicate wells on aluminum microtiter plates (A752-96, Bruker Optics, Karlsruhe) using a microspatula to fill the 6-mm-diameter wells and level the soil. Soil mid-DRIFT spectra were obtained using a FT-IR Tensor 27 with high-throughput screening extension unit with robotic arm (Twister Microplate Handler), Bruker Optics, Karlsruhe, Germany; illustrated in Shepherd and Walsh, 2007). The detector was a liquid N₂-cooled MCT detector. Spectra were collected across 4000–600 cm⁻¹ with a resolution of 4 cm⁻¹. Background measurements of the first empty well were taken before each single measurement to account for changes in temperature and air humidity. Each one of the four replicate wells had 32 co-added scans, and the four spectra were averaged to account for within-sample variability and differences in particle size and packing density (Terhoeven-Urselmans, et al., 2010).

2.3.2 The USA samples

The samples from the soil survey were originally crushed and sieved to < 2.0 mm and stored in an air-dried state. No further grinding was performed for mid-DRIFTS (Deiss et al., 2019a). Before acquiring spectra, soils were dried for > 48 h at 40 °C and at 12–14% relative humidity. To analyze samples in the mid-DRIFTS instrument, 24-well anodized aluminum plates were used. These plates hold 24 removable polystyrene sample cups with a top circular opening area of 10 mm diameter and 5.5 mL volume. The sample cups were loaded by initially over-filling the cups with soil, then tapping the cup side gently thrice to settle the soil into the cup, and finally smoothing the surface by scraping excess soil with the narrow edge of a stainless-steel spatula. The soil was not packed or compressed into the well other than by tapping and scraping to avoid artifacts of matrix density (Terhoeven-Urselmans, et al., 2010).

Spectra from USA soils were obtained using an X,Y Autosampler (Pike Technologies Inc., Madison, WI) coupled with a Nicolet iS50 spectrometer equipped with a diffuse reflectance accessory (Thermo Fisher Scientific Inc., Waltham, MA). Potassium bromide (KBr) was used for background spectrum collected at the beginning of each plate

Additionally, only samples after 1966 were considered, as prior to that year wet combustion (oxidation via the Walkley Black method) was used to determine TOC.

Table 1
Summary statistics of measured soil properties of the USA Midwest and Tanzania soil sets. Permanganate oxidizable carbon.

<table>
<thead>
<tr>
<th></th>
<th>Clay %</th>
<th>Sand %</th>
<th>pH</th>
<th>TOC %</th>
<th>POXC mg kg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA Midwest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>399</td>
<td>400</td>
</tr>
<tr>
<td>Min.</td>
<td>1</td>
<td>0</td>
<td>2.3</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>17</td>
<td>8</td>
<td>4.9</td>
<td>0.3</td>
<td>102</td>
</tr>
<tr>
<td>Median</td>
<td>26</td>
<td>18</td>
<td>5.9</td>
<td>0.5</td>
<td>154</td>
</tr>
<tr>
<td>Mean</td>
<td>29</td>
<td>26</td>
<td>5.9</td>
<td>0.9</td>
<td>286</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>39</td>
<td>35</td>
<td>7.0</td>
<td>1.1</td>
<td>327</td>
</tr>
<tr>
<td>Max.</td>
<td>85</td>
<td>98</td>
<td>8.0</td>
<td>9.1</td>
<td>1412</td>
</tr>
<tr>
<td>Tanzania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>533</td>
<td>533</td>
<td>335</td>
<td>533</td>
<td>532</td>
</tr>
<tr>
<td>Min.</td>
<td>21</td>
<td>1</td>
<td>4.5</td>
<td>0.6</td>
<td>7</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>46</td>
<td>15</td>
<td>6.0</td>
<td>1.8</td>
<td>331</td>
</tr>
<tr>
<td>Median</td>
<td>55</td>
<td>20</td>
<td>6.6</td>
<td>2.4</td>
<td>507</td>
</tr>
<tr>
<td>Mean</td>
<td>54</td>
<td>22</td>
<td>6.4</td>
<td>2.4</td>
<td>522</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>62</td>
<td>26</td>
<td>6.9</td>
<td>2.9</td>
<td>684</td>
</tr>
<tr>
<td>Max.</td>
<td>91</td>
<td>58</td>
<td>7.8</td>
<td>6.1</td>
<td>1404</td>
</tr>
</tbody>
</table>

reading (i.e., every 23 samples). All measurements were conducted from 4000 to 400 cm$^{-1}$, 4 cm$^{-1}$ wavenumber resolution and with 24 co-added scans in absorbance mode. We further reduced the spectral data to 4000–700 cm$^{-1}$ to eliminate increased noise at the upfield spectral boundary to conduct spectral analysis and predictions. For each soil sample, four soil subsamples were measured with one spectral reading per well (24 co-added scans each) to generate the spectral replicates that were further averaged prior to qualitative analysis and predictions. The spectral readings were randomly located within a 3 mm diameter in the central position of each well configured in AutoPro™ software (Pike Technologies Inc., Madison, WI).

2.4. Spectra characterization

Characterization of absorbance (log R$^{-1}$, where R is reflectance) spectra was summarized using principal components analysis (PCA) with spectra mean-centered by subtracting wavenumber-specific absorbance means (overall spectra) from each spectrum wavenumber-specific absorbance (centering was done with R Package ‘base’, R Core Team, 2016). We used the iterative NIPALS algorithm (Martens and Naes, 1989) to derive the principal components (R package ‘chemometrics’, Varmuza and Filzmoser, 2009). The first two principal component scores and loadings were plotted to evaluate soil datasets spectra PCA dispersion and wavenumber-specific PCA loadings distribution.

2.5. Spectral treatment and selection

Several spectral treatments were evaluated for ability to extract vibrational information from the spectra, and increase model robustness, accuracy, repeatability, and reproducibility (Stevens and Ramirez-Lopez, 2015). Tested treatments were Savitzky-Golay smoothing and derivative, GapSegment derivative, continuum-removal, detrend normalization, standard normal variate, block scaling, and sum of squares block weighting. Standard normal variate transformation (Fearn, 2008) and detrend normalization were also tested in combination with filtering (applied after Savitzky–Golay and Gap-Segment) (R package ‘prospectr’, Stevens and Ramirez-Lopez, 2015). Selected spectral treatments specific for each soil property and soil set are described in Tables 2 and 3.

Models were trained on a representative calibration set (75% of the dataset) selected using the Kennard–Stone sampling algorithm (Kennard and Stone, 1969), specifically for each spectral treatment, to explain ≥95% of the total variance and validated on the remaining samples (25% of the dataset) (R package ‘prospectr’, Stevens and Ramirez-Lopez, 2015). In the USA dataset, this selection process was separately performed for each one of the four physiographic locations (n = 100 each) for a final calibration set of n = 300 and validation set of n = 100 (except TOC, calibration = 300 and validation n = 99). In the Tanzania dataset, this selection process was done across all samples maintaining the proportion 75% calibration set to 25% test set for all soil properties.

Prior to modeling, spectral outliers were detected using absorbance spectra considering orthogonal distance and score distance. Orthogonal distance was between the true position of each data point and its projection in space of the first few principal components to explain ≥80% of the total variance. Score distance was the projection of a sample to the center of all sample projections (Wehrens, 2011). The final dataset was constrained to a sample set with orthogonal distance < 25 and score distance < 6 for the USA dataset, and orthogonal distance < 4 and score distance < 6 for the Tanzania dataset. No outliers were excluded within these orthogonal distance and score distance ranges.

2.6. Prediction model calibration and independent validation

We trained PLS and SVM models with different algorithms on calibration sets and these were subsequently tested on independent validation sets. For PLS, three algorithms were tested, including kernel, SIMPLS, and classical orthogonal scores (R package ‘pls’, Mevik and Wehrens, 2007). The number of latent vectors in PLS was determined via 10-fold cross-validation (R package ‘chemometrics’, Varmuza and Filzmoser, 2009). For SVM, four kernels (classes of algorithms in SVM) were tested, including linear kernel, Gaussian Radial Basis Function (RBF) kernel, polynomial kernel (second and third degrees), and hyperbolic tangent kernel (sigmoid) (R package ‘e1071’, Meyer et al., 2015). A common configuration tested in all PLS algorithms was with or without a scaling function. Pre-treated spectra were scaled or not scaled for PLS by dividing centered wavenumber-specific absorbances by their standard deviations (Mevik and Wehrens, 2007; Varmuza and Filzmoser, 2009), whereas for SVM both pre-treated spectra and predictor were always scaled to zero mean and unit variance prior to calibration (Meyer et al., 2015).

Best combination of spectral treatment and multivariate regression model (PLS and SVM) were selected for each soil property and dataset based on sequential criteria looking first at the lowest root mean squared error (RMSE$_{v}$), then greatest residual prediction deviation

Table 2

Partial least squares (PLS) spectral treatments and model configurations used to predict soil variables in datasets from USA and Tanzania (TZ) in diffuse reflectance infrared Fourier transform spectroscopy (mid-DRIFTS).

<table>
<thead>
<tr>
<th>Soil property</th>
<th>Locate</th>
<th>Spectral treatmenta</th>
<th>Argumentsb</th>
<th>Multivariate regression model detailsc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay (%)</td>
<td>USA</td>
<td>S-G/DT</td>
<td>DO 0, PO 1, SS 11</td>
<td>classical scaled 7 LV</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>G-S/SNV</td>
<td>DO 2, FL 11, SS 1</td>
<td>classical scaled 4 LV</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>USA</td>
<td>S-G/SNV</td>
<td>DO 0, PO 2, SS 11</td>
<td>classical scaled 8 LV</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>G-S/DT</td>
<td>DO 1, FL 11, SS 10</td>
<td>classical scaled 6 LV</td>
</tr>
<tr>
<td>pH</td>
<td>USA</td>
<td>S-G/SNV</td>
<td>DO 0, PO 4, SS 11</td>
<td>classical scaled 7 LV</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>S-G/SNV</td>
<td>DO 1, PO 3, SS 11</td>
<td>simples scaled 5 LV</td>
</tr>
<tr>
<td>TOC (%)d</td>
<td>USA</td>
<td>Absorbance</td>
<td>(log reflectance$^{-1}$)</td>
<td>simples non-scaled 6 LV</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>S-G/DT</td>
<td>DO 2, PO 4, SS 10</td>
<td>kernelpls scaled 2 LV</td>
</tr>
<tr>
<td>POXC (mg kg$^{-1}$)e</td>
<td>USA</td>
<td>Movav</td>
<td>FL 11</td>
<td>classical scaled 5 LV</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>D</td>
<td>DO 1</td>
<td>simples scaled 1 LV</td>
</tr>
</tbody>
</table>

a Savitzky-Golay (S-G), Gap-Segment (G-S), Detrend (DT), Standard Normal Variate (SNV), and Moving Average filter (Movav). Absorbance (log reflectance$^{-1}$) was the spectral basis for all other pretreatments.

b Derivative orders (DO), segment sizes (SS), polynomial orders (PO), and filter length (FL).

c For PLS three algorithms were tested: the kernel, SIMPLS and the classical orthogonal scores.

d Modeling was conducted with logarithmic transformed data. Spectra was scaled or not by dividing centered wavenumber-specific absorbances by their standard deviations. TOC: Total organic carbon. POXC: Permanganate oxidizable carbon.
(RPD), and then greatest coefficient of determination (R^2) of the independent validation datasets. The RMSE is the difference between observed values and the predicted values. The RPD is the standard deviation of observed values divided by the RMSE. The RPD takes both the prediction error and the variation of observed values into account, providing a metric of model validity that is more objective for comparisons across evaluated properties and studies. The R^2 is a measure of how well observed outcomes are reproduced by the model, based on the proportion of total variation explained by the model. The R^2 also allow comparison across evaluated properties and studies, but is highly dependent on a property’s range of values.

To determine the wavenumber importance for each soil property (i.e., main selected spectral variables), specific methods were used for each multivariate regression model (PLS or SVM). For PLS, loadings vectors of the first two latent variables were extracted from the PLS models and plotted against the wavenumbers. Interpretation of this method is that the more intense negative or positive loadings at specific wavenumbers indicate more important wavenumbers for prediction development. In the support vector machines (SVM) models, a recursive feature elimination algorithm was used (R package ‘caret’, Kuhn, 2018). This approach implements backward selection of predictors (wavenumbers) based on predictor importance ranking from the first to the least important wavenumbers. The recursive feature elimination was processed using a 10-fold cross-validation with a 75% calibration set to 25% leave-group out cross-validation. For both PLS and SVM, the same spectral pretreatment method selected to develop the prediction model of each soil property was used to determine the wavenumber importance.

2.7. Tuning support vector machines models

Support vector machines multivariate regression models performance (accuracy) depends on selecting the kernel and setting the parameters C and ϵ. To identify appropriate parameters, we first selected the best kernel based on prediction accuracy using typically implemented parameters in the ϵ-insensitive error function (with $\epsilon = 0.1$, a value of 1 for the penalization factor C, these are the default parameters implemented in R package ‘e1071’), and then tested different parameters C and ϵ for the selected best performing kernel. For all soil properties in both datasets, the Gaussian Radial Basis Function (radial) was selected based on the best model performance (i.e., $< $ RMSE, > RPD, and > R^2). After selecting the kernel, the best combination of C and ϵ was searched using an error grid set on a hyperparameter range (C and ϵ) (R package ‘e1071’, Meyer et al., 2015). We conducted preliminary tests to set the final range of tested parameters for each dataset, and selected ranges based on model performance. We tested C up to 100 and ϵ up to 10. The final range of tested parameters was set for C from 0 to 32 and ϵ from 0.001 to 1.0 for the USA dataset and C from 0 to 32 and ϵ from 0.001 to 0.5 for the Tanzania dataset. The grid search was conducted by a 10-fold cross validation, and hyperparameters were selected based on the best model performance (lowest RMSE^2).

Table 3

Classical support vector machines (SVM) and tuned SVM (tSVM) spectral treatments and model configurations used to predict soil properties in datasets from USA and Tanzania (TZ) in diffuse reflectance infrared Fourier transform spectroscopy (mid-DRIFTS).

<table>
<thead>
<tr>
<th>Soil property</th>
<th>Locate</th>
<th>Spectral treatmenta</th>
<th>Argumentsb</th>
<th>Model</th>
<th>Multivariate regression model detailsc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay (%)</td>
<td>USA</td>
<td>DT</td>
<td>-</td>
<td>SVM</td>
<td>cost (C) 0.1</td>
</tr>
<tr>
<td>TZ</td>
<td>S-G/SNV</td>
<td>DO 1, PO 1, SS 11</td>
<td>SVM</td>
<td>tSVM</td>
<td>4.78 0.001</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>USA</td>
<td>S-G/SNV</td>
<td>DO 0, PO 4, SS 11</td>
<td>SVM</td>
<td>1.00 0.1</td>
</tr>
<tr>
<td>TZ</td>
<td>G-S/DT</td>
<td>DO 1, FL 11, SS 10</td>
<td>SVM</td>
<td>tSVM</td>
<td>17.15 0.001</td>
</tr>
<tr>
<td>pH</td>
<td>USA</td>
<td>S-G/SNV</td>
<td>DO 0, PO 4, SS 11</td>
<td>SVM</td>
<td>1.00 0.1</td>
</tr>
<tr>
<td>TZ</td>
<td>G-S/DT</td>
<td>DO 3, FL 11, SS 1</td>
<td>SVM</td>
<td>tSVM</td>
<td>4.29 0.001</td>
</tr>
<tr>
<td>TOC (%)</td>
<td>USA</td>
<td>S-G/SNV</td>
<td>DO 0, PO 1, SS 11</td>
<td>SVM</td>
<td>1.00 0.1</td>
</tr>
<tr>
<td>TZ</td>
<td>G-S/DT</td>
<td>DO 1, FL 11, SS 1</td>
<td>SVM</td>
<td>tSVM</td>
<td>1.00 0.1</td>
</tr>
<tr>
<td>POXC (mg kg$^{-1}$)</td>
<td>USA</td>
<td>S-G/DT</td>
<td>DO 0, PO 1, SS 11</td>
<td>SVM</td>
<td>1.00 0.1</td>
</tr>
<tr>
<td>TZ</td>
<td>G-S/DT</td>
<td>DO 2, FL 11, SS 5</td>
<td>SVM</td>
<td>tSVM</td>
<td>4.28 0.001</td>
</tr>
</tbody>
</table>

a Savitzky-Golay (S-G), Gap-Segment (G-S), Derivative (D), Detrend (DT), and Standard Normal Variate (SNV).

b Absorbance was the spectral basis for all other pretreatments. Derivative orders (DO), segment sizes (SS), polynomial orders (PO), and filter length (FL).

c Four SVM kernels were tested: linear, polynomial (second and third degrees), radial basis and sigmoid. N vectors: number of support vectors. Spectra and predictor were scaled to zero mean and unit variance prior to calibration. For all SVM and tSVM, kernel: radial. Gamma: 0.000587 (clay), 0.000594 (sand), 0.000587 (pH), 0.000146 (TOC), and 0.000596 (POXC). Range of tested parameters: C from 0 to 25 for both datasets.

2.8. Data processing and statistical analyses

Data was processed and analyzed using R version 3.3.3 (R Foundation for Statistical Computing, Vienna, Austria) using the packages ‘chemometrics’ (Varmuza and Filzmooser, 2009), ‘ChemometricsWithR’ (Wehrens, 2011), ‘e1071’ (Meyer et al., 2015), ‘pls’ (Mevik and Wehrens, 2007), ‘prospectr’ (Stevens and Ramirez-Lopez, 2015), and ‘stats’ (R Core Team, 2016).

3. Results

The two soil datasets evaluated in this study (USA and Tanzania) entailed a wide range of soil physical, chemical, and biological properties (Table 1). The USA dataset had wider ranges for clay, sand, pH, and TOC than Tanzania. Permanganate oxidizable carbon had more similar ranges between the two datasets, but the distribution of values across ranges differed as it can be observed by the quartiles, median,
models, based on RMSE\textsubscript{V}, RPD\textsubscript{V}, and R2
proved prediction accuracies when compared to non-tuned SVM.

The main variation of user defined parameters in selected PLS
cross soil properties and datasets was the number of selected
latent variables, and these varied from one latent variable for POXC in
the Tanzania dataset to eight latent variables for sand in the USA
dataset (Table 2). In general, most of the best performing PLS models were
obtained with the classical algorithm and scaled spectra. Exceptions in
which other algorithms achieved best predictions were for TOC using the
kernelpsis algorithm and for POXC using the SIMPLS algorithm in the
Tanzania dataset, and for TOC using the SIMPLS algorithm and no
spectra scaling in the USA dataset. Non-tuned SVM models used fixed
\(\varepsilon\) and \(C\) parameters of 0.1 and 1.0 respectively. However, there was
variation across soil properties on the number of support vectors, which
varied from 157 support vectors for TOC in the USA dataset, to 333
support vectors for TOC in the Tanzania dataset.

The SVM models were optimized based on the parameters \(\varepsilon\) and \(C\)
using an error grid set on a specified hyperparameters range, as ex-
emplified for clay concentration from Tanzania soils (Fig. 2). For the
dataset from Tanzania, the selected parameter of \(C\) ranged from 4.28 to 17.15
across all measured soil properties and the selected parameter of \(\varepsilon\) was
generally 0.001, except for soil pH (\(\varepsilon = 0.201\)) (Table 3 and
Supplementary Fig. 3). The Tanzania dataset had \(C\) between 1.07 and
4.29 and \(\varepsilon\) ranging from 0.001 (clay and sand) to 0.201 (pH and POX)
(Table 3 and Supplementary Fig. 4). In both datasets, tuning SVM in-
creased the number of support vectors, except for the tuned models
with larger \(\varepsilon\) (i.e., > 0.2) for which a lower number of support vectors
was obtained when compared to non-tuned SVM models. The
predictive response of SVM outperformed PLS for all soil
properties in both datasets, and the magnitude of improvement de-

depended on the soil property in each data set (Figs. 3 and 4, Tables 4 and
5). The SVM optimization of the parameters \(\varepsilon\) and \(C\), searched using a
cross-validated error grid (RMSE\textsubscript{CV}) set on a specified hyperparameters
range (Fig. 2, and Supplementary Figs. 3 and 4), maintained or
improved prediction accuracies when compared to non-tuned SVM
models, based on RMSE\textsubscript{V}, RPD\textsubscript{V}, and R2 statistical coefficients of
independent validation sets (Figs. 3 and 4, Tables 4 and 5). As hypothe-
sized, these optimized SVM models always improved model calibration

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{Fig_2.png}
\caption{Hyperparameters search grid to optimize support vector machines re-
gression models predicting soil clay concentration in Tanzania soils from diffuse
reflectance infrared Fourier transform spectroscopy (mid-DRIFTS). The other
soil properties search grids are in Supplementary Figs. 3 and 4.}
\end{figure}

and mean POXC values (Table 1). The USA Midwest soil dataset had a
larger range of spectral variability than Tanzania soil dataset, as illu-
strated by the dispersion of PCA scores (Supplementary Fig. 1). The
PCA loading vectors (PC1 and PC2) had a distinct composition of
spectral features between the two datasets indicating that dataset-spe-
cific key wavenumbers were explaining most of the spectral variability
(Supplementary Fig. 2).

The wavenumber importance was measured by different methods
for PLS or SVM (Fig. 5). Several similarities in wavenumber importance
existed between PLS and SVM, but each model exhibited distinct use of
wavenumbers depending on the soil property and dataset. For example,
in the Midwest USA dataset, prediction of clay content for both multi-
variate models (PLS and SVM) drew upon, among other regions or the
MIR, the downfield of the MIR (~4000–3777 cm-1). To our knowl-
edge, this region does not express absorbance features from soil func-
tional groups, and the importance could be related with the overall
spectra reflectiveness (absorbance values overall wavenumbers). The
importance of this region in both models was evidenced by (i) the in-
tense negative values of PLS latent variable (LV) loadings in LV1 and
(ii) the recursively selected important wavenumbers of SVM. The region
at 3700 cm-1 to 3200 cm-1 of the same spectrum was a positive
loading in the PLS LV1, and the same region is expressed in the SVM
models as important wavenumbers (darker tones). This spectral region
corresponds to the functional group O–H of hydroxyl stretching (kao-
linite and others) (3723–3686 cm-1, Russell, 1987) and Si–O functional
group of 2:1 layer aluminosilicates (3968–3565 cm-1, Nguyen et al.,
1991). Another similar behavior between the PLS LV1 loadings and
SVM important wavenumbers for clay in USA soils can be observed for
wavenumbers across 1400 cm-1 to 1200 cm-1, a region that contains
peaks of symmetric –CO3– stretch and/or –CH bending of aliphatics.
An example of a poorly defined relationship between important regions
of PLS and SVM can be observed for TOC in the Tanzania dataset. The
frequencies between ~2600 cm-1 and 2400 cm-1 were considered
important for SVM but not so evidently for PLS, which had one of the
noisiest loading vectors distributions among all soil variables. This re-
gion corresponds to the functional group CO\textsubscript{3} of calcite (peaks ranging
from 2650 to 2420 cm-1, Nguyen et al., 1991).

4. Discussion

Predicting soil properties with mid-DRIFTS has clearly demon-
strated potential, but many methodological decisions will impact pre-
dictive performance. Regardless of sample preparation and spectra ac-
quision (Deiss et al., 2019b), chemometric modeling can have major
impacts on prediction accuracy. Soil measurements in mid-DRIFTS rely
on reference data from traditional analytic methods to calibrate models
for a specific set of soils, but can later facilitate estimation of soil
properties due to the reduced time, labor and costs associated with the
technique (Soriano-Disla et al., 2014; Nocita et al., 2015). Once re-
ference measured data is used to calibrate mid-DRIFTS models, the soil
measurements must be accurate, precise, and reproducible following
rigorous laboratory standards, so that calibrated models can be reliable.
After training and validating a model, predictions can be performed on
new soil samples using only the spectra, but these new samples must be
spectrally similar to the spectral library used during modeling. Im-
portant characteristics to be taken into consideration are edaphic
properties due to the reduced time, labor and costs associated with the
analytical process. Our results showed that SVM outperformed PLS for
all predictions, and tuning SVM models maintained or improved ac-
curacy in relation to non-tuned SVM models (Figs. 3 and 4 and Tables 4
and 5). Each soil property predicted from both datasets had specific
"
spectral treatments, SVM model configurations, and tuning parameters (Table 3, Fig. 2, and Supplementary Figs. 3 and 4), suggesting model optimization is a soil property- and dataset-specific process that can improve prediction accuracy of mid-DRIFTS.

During the SVM parameter optimization process, there was a trade-off between the size of ϵ (insensitivity zone) and the penalty parameter C (Table 3). Reducing the insensitivity zone increased the size of C for most soil properties, and generally increased the number of support vectors. This trade-off was expected based on the ϵ-insensitive loss function behavior (Smola and Schölkopf, 2004). Values are expected to be more distant from and/or out of the insensitive zone (greater C) by decreasing the size of the sensitive zone (smaller ϵ) (Fig. 1). These
optimum parameters (ε and C) were searched using a cross-validated error grid (RMSECV) set on a specified hyperparameters range (Fig. 2, and Supplementary Figs. 3 and 4), and this may be an effective approach to identify optimum parameters for SVM to develop predictions of soil properties using mid-DRIFTS, once prediction accuracy was often improved (Figs. 3 and 4 and Tables 4 and 5). When the ε was increased in relation to non-tuned SVM (i.e., pH in the USA dataset and TOC in the Tanzania dataset) (Table 3), the numbers of support vectors were reduced revealing another potential trade off of SVM optimization. The number of support vectors indicates the number of training samples to
encode the calibration set, and reducing the number of support vectors minimize chances of model over-fitting. Moreover, increasing the number of support vectors can add significant amount of time while modeling and/or running predictions. However, this additional time can be beneficial if the prediction accuracy is improved.

Setting guidelines on SVM regression parameterization is important because these parameters are user-defined inputs and there is lack of information about specific values to use when predicting soil properties with mid-DRIFTS. To our knowledge, this is the first use of SVM regression tuning to enhance prediction of soil properties from mid-DRIFTS. Grid search for hyperparameters has been used in near-infrared spectroscopy and other soil applications non-related to spectroscopy. Predicting TOC with near-infrared spectroscopy and SVM, Chen et al. (2015) tested the effect of tuning other SVM parameters (gamma and sigma), different than those included in our study (epsilon and C). Optimizing SVM using grid search for gamma and sigma improved accuracy of TOC predictions (6.6% reduction of RMSEV) (Chen et al., 2015). Grid search has also been used in other soil applications beyond infrared spectroscopy such as prediction of soil pore-water pressure, soil heavy metal concentrations, and soil water retention potential (Mirihosseini, 2017; Babangida et al., 2016; Wu et al., 2016; Khlosi et al., 2016).

Optimizing chemometrics in mid-DRIFTS allows better extracting information from spectra to more accurately predict soil physical, chemical, and biological properties. However, modeling is susceptible to generating meaningless outputs and non-linear models can be easily over-fitted. Chemometrics is generally a naive modeling approach because the procedure does not systematically consider specific peaks in the input spectra if users do not assign weights to wavenumbers or truncate spectra. These models identify frequencies (wavenumbers) of the spectrum that are more related to the variation of a certain soil property, regardless of the kind of soil organic or inorganic functional group corresponding to the wavenumbers, and use these wavenumbers to predict the soil property. Adding to that, some properties can be totally or partially predicted in multivariate models because of their correlation or covariation with other soil properties (Chang et al., 2001; Stenberg et al., 2010; Reeves, 2010). We found that PLS and SVM did not necessarily use the same wavenumbers to develop predictions for each soil property, and there were occasions where these most important wavenumbers did not directly relate to the property of interest (Fig. 5). For example, both PLS and SVM predictions drew upon the downfield region of the MIR (~4000–3777 cm⁻¹), but this region does not have specified peaks defined by soil functional groups (e.g.,

<table>
<thead>
<tr>
<th>Soil property</th>
<th>Model</th>
<th>Calibration set (75% of dataset)</th>
<th>Validation set (25% of dataset)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>RPD</td>
<td>R²</td>
</tr>
<tr>
<td>Clay (%) (n = 400)</td>
<td>PLS</td>
<td>7.27</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>5.36</td>
<td>2.72</td>
</tr>
<tr>
<td></td>
<td>tSVM</td>
<td>3.21</td>
<td>5.04</td>
</tr>
<tr>
<td>Sand (%) (n = 400)</td>
<td>PLS</td>
<td>9.66</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>7.97</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>tSVM</td>
<td>1.00</td>
<td>25.0</td>
</tr>
<tr>
<td>pH (n = 400)</td>
<td>PLS</td>
<td>0.54</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>0.40</td>
<td>2.44</td>
</tr>
<tr>
<td></td>
<td>tSVM</td>
<td>0.28</td>
<td>3.62</td>
</tr>
<tr>
<td>TOC (%) (n = 399)</td>
<td>PLS</td>
<td>0.50</td>
<td>2.49</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>0.51</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>tSVM</td>
<td>0.22</td>
<td>5.03</td>
</tr>
<tr>
<td>POXC (mg kg⁻¹) (n = 400)</td>
<td>PLS</td>
<td>207</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>122</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>tSVM</td>
<td>89</td>
<td>3.32</td>
</tr>
</tbody>
</table>

* Statistical coefficients were determined on logarithmic back-transformed data. RMSE: root mean squared error, RPD: residual prediction deviation, and R²: coefficient of determination. TOC: Total organic carbon. POXC: Permanganate oxidizable carbon.

<table>
<thead>
<tr>
<th>Soil property</th>
<th>Model</th>
<th>Calibration set (75% of dataset)</th>
<th>Validation set (25% of dataset)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>RPD</td>
<td>R²</td>
</tr>
<tr>
<td>Clay (%) (n = 533)</td>
<td>PLS</td>
<td>5.26</td>
<td>1.97</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>4.02</td>
<td>2.98</td>
</tr>
<tr>
<td></td>
<td>tSVM</td>
<td>3.24</td>
<td>3.88</td>
</tr>
<tr>
<td>Sand (%) (n = 533)</td>
<td>PLS</td>
<td>3.95</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>2.87</td>
<td>2.83</td>
</tr>
<tr>
<td></td>
<td>tSVM</td>
<td>2.00</td>
<td>4.36</td>
</tr>
<tr>
<td>pH (n = 335)</td>
<td>PLS</td>
<td>0.28</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>0.20</td>
<td>3.04</td>
</tr>
<tr>
<td></td>
<td>tSVM</td>
<td>0.16</td>
<td>4.14</td>
</tr>
<tr>
<td>TOC (%) (n = 533)</td>
<td>PLS</td>
<td>0.72</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>0.56</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>tSVM</td>
<td>0.50</td>
<td>1.52</td>
</tr>
<tr>
<td>POXC (mg kg⁻¹) (n = 532)</td>
<td>PLS</td>
<td>494</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>133</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td>tSVM</td>
<td>132</td>
<td>1.61</td>
</tr>
</tbody>
</table>
Moreover, the relatively high number of support vectors in relation to the size of the calibration set (Table 3) and sand calibration statistical outcomes in the USA dataset (Table 4) indicates that the datasets can still be broadened to cover a greater extent of the soil spectra variability to reduce over-fitting and increase robustness of those tuned models to develop predictions to new samples. For these reasons, independent validation sets are indispensable; once kernel models are sensitive to over-fitting (Ali et al., 2015) and potentially do not translate predictive prediction accuracy from the calibration sets to independent test sets or new samples.

Several multivariate regression models have been used to predict soil properties in mid-DRIFTS. However, there is no consensus on what model class improves accuracy when measuring soil properties. At same time, this does not imply that a single modeling approach will work in every particular case or even as a universal model class, but finding ways to chemometrically deal with complex soil spectra may allow improving prediction robustness in mid-DRIFTS of soils. Partial least squares models are generally easier to derive and interpret (e.g., PLS LV loadings), and are insensitive to colinearity (Haaland and Thomas, 1988; Gholizadeh et al., 2013). On the other hand, non-linear multivariate regression methods can be complex to interpret (Soriano-Disla et al. 2014) and they are not always available in commercially available spectral processing software. Previous multivariate regression models comparisons in mid-DRIFTS of soils have shown variable responses for...
different datasets and soil properties. Comparing multivariate regression models in soils from the Ribeirão Inhaúma basin, Brazil (n = 184), Campbell et al. (2018) obtained greater prediction accuracies with PLS for TOC and Mehlich-1 extractable phosphorus whereas SVM performed better for clay. Jia et al. (2017) obtained greater accuracy with SVM when compared to PLS predicting TOC in soils from an alpine landscape on the Qinghai–Tibet Plateau (n = 330). In oak forest soils across East China (n = 140), Kang et al. (2017) found that SVM has similar or better prediction than PLS for several organic carbon compounds. Comparing two non-linear models in representative soil profiles from Brazil (n = 1117 from 367 soil profiles), Souza et al. (2012) obtained greater prediction performances for total organic matter using SVM than neural networks. In most cases, non-linear models such as SVM or neural networks performed better than or comparable to linear models including PLS. Less commonly, better prediction performances were obtained with linear than non-linear models. Finding non-linearities in the relationship between spectral characteristics and soil properties distributions is expected for heterogeneous, edaphically diverse soil sets (e.g., Calderón et al., 2017). There is a wide variability of soil reflectance patterns in mid-infrared frequencies of the spectrum and that could be benefiting non-linear models in these predictions. Support vector machines regression models have been underused compared to PLS models (Viscarra-Rossel et al., 2006; Gholizadeh et al., 2013) but the emergence of SVM tuning stands to increase the utility of this chemometric approach. Tuning SVM models will add more computational demand and time to the modeling process depending on dataset characteristics (e.g., spectral resolution and number of samples), number of support vectors, and/or cross-validation configurations. Support vector machines regression model tuning should be done for each soil property after selecting an optimal spectral treatment and a SVM kernel. While this may require a greater initial investment in model development, once optimal parameters have been found similar time and computational demand can be expected as in non-tuned SVM models, presenting a worthwhile investment that can improve prediction accuracy. These parameters are user defined inputs and can be specified, a priori, when developing predictions for new samples. Tuning SVM can also be done for other parameters such as gamma and sigma (e.g., Chen et al., 2015), and more research is needed to fully vet SVM models parameterization for mid-DRIFTS soil analysis.

5. Conclusion

Optimizing chemometric models by curating each prediction based on the combination of spectral treatments, model selection and configurations, and tuning parameters may improve prediction accuracy of mid-DRIFTS to predict soil properties. Non-linear models (support vector machines) outperformed linear models (partial least squares) for all tested soil properties (sand, clay, pH, TOC, POXC) in soils from both Tanzania and USA Midwest. Specific spectral treatments were used for each prediction, and the Gaussian Radial Basis Function (radial) was the most accurate kernel in support vector machines regression models. Tuning support vector machines models based on the parameters C and ε maintained or improved accuracy in relation to non-tuned support vector machines models. Therefore, tuned support vector machines regression models may be used as a way to derive predictions from the complex relationships between a soil property and the mid-infrared spectrum. Vetting modeling strategies in mid-DRIFTS allows better using information from spectra to more accurately predict soil physical, chemical, and biological properties.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the Foundation for Food and Agricultural Research and the School of Environment and Natural Resources at Ohio State University. We sincerely thank the anonymous reviewers for the comprehensive evaluations of our manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.geoderma.2020.114227.

References

