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Abstract
The number of co-added scans and spectral resolution are two fundamental acquisition

parameters in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).

However, systematic studies evaluating these parameters in soil science applica-

tions are lacking, especially when using mid-infrared frequencies (mid-DRIFTS). The

objective of this study was to evaluate how numbers of co-added scans and spectral

resolution affect both qualitative and predictive applications of high-throughput mid-

DRIFTS of soils. We first explored the literature with a systematic review to better

understand variability in acquisition parameters and their hypothesized relationships

with mid-DRIFTS predictive performance (accuracy) of soil organic and/or total car-

bon (as a reference variable), but no evident relationship could be established across

studies. Second, we experimentally evaluated how spectral resolutions (4, 8, 16, and

32 cm−1), and number of co-added scans (8, 16, and 24 scans) affected (i) specific

spectral peaks representing mineral and organic functional groups, and (ii) predictive

performance of soil variables clay, sand, pH, total organic carbon, and permanganate

oxidizable carbon (POXC). Decreasing the number of co-added scans from 24 to 8

increased wavenumber-specific spectral variability and decreased both the predictive

performance and the ability to characterize smaller peaks of mineral and organic func-

tional groups. In contrast, broadening spectral resolution from 4 to 32 cm−1 reduced

multivariate scores dispersion and had a positive effect on the predictive perfor-

mance, even though some smaller peaks disappeared in resolutions wider than 8 cm−1.

Acquisition parameters can be set to reduce both scanning time and computational

demand while maintaining qualitative and predictive applications of mid-DRIFTS in

soil analysis.

1 INTRODUCTION

Diffuse reflectance infrared Fourier transform spectroscopy

in the mid-infrared region (mid-DRIFTS) offers two possi-

Abbreviations: DRIFTS, diffuse reflectance infrared Fourier transform

spectroscopy; PCA, principal component analysis; POXC, permanganate

oxidizable carbon; TC, total carbon; TOC, total organic carbon.
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bilities for the study of soils: (1) Qualitative, that is, compo-

sitional analysis by functional groups for organic matter and

mineralogical compositions; and (2) Predictive, that is, cal-

ibrating and validating datasets to predict a wide range of

soil physical, chemical, and biological properties. The util-

ity of mid-DRIFTS is that specific polar bonds and their

associated vibrations absorb infrared electromagnetic energy

at characteristic frequencies, enabling identification (and
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ideally, quantification) of specific molecular bond types,

known as functional groups (Parikh, Goyne, Margenot,

Mukome, & Calderón, 2014). Thus, an absorbance spec-

trum exhibits peaks that represent absorption of infrared elec-

tromagnetic energy at frequencies (commonly expressed as

wavenumbers, cm−1) being specific to the type and vibra-

tional mode(s) of functional groups. Absorbances in the mid-

infrared region (4000–400 cm−1) involve fundamental vibra-

tions of mineral and organic functional groups, and therefore

mid-DRIFTS has an immense potential to be used in soil sci-

ences (Nocita et al., 2015). This technique has been applied

to soil samples for decades, but there is still a notable lack of

studies that evaluated specific acquisition parameters in mid-

DRIFTS using a wide range of soils types and soil properties.

Choices of acquisition parameters such as number of co-

added scans (number of scans acquired and averaged to pro-

duce a spectrum) and resolution can affect the spectral quality

(Azambre, Heintz, Schneider, Krzton, & Weber, 1999; Blitz

& Klarup, 2002; Griffiths, 1972; Griffiths & Haseth, 1986;

Hanssen, 1993), and therefore outcomes from mid-DRIFTS.

Spectral quality can be a highly restrictive factor in Fourier

transform infrared spectroscopy of soils that limits the util-

ity of this technique (Coûteaux, Berg, & Rovira, 2003); how-

ever, only a few studies have evaluated the impact of selecting

acquisition parameters in soil samples (e.g., Adeline, Gomez,

Gorretta, & Roger, 2017; Knadel, Stenberg, Deng, Thomsen,

& Greve, 2013; Peng, Shi, Song, & Gao, 2014; Robin, Petit,

Beaufort, & Prêt, 2013; Yang, Kuang, & Mouazen, 2012).

Notably, little information is available on how acquisition

parameters affect spectral quality and thus qualitative and pre-

dictive outcomes from mid-DRIFTS of soils. Multiple metrics

can be used to assess spectral quality, such as spatial resolu-

tion, signal-to-noise ratio, and presence of spectral artifacts

(Kimber & Kazarian, 2017). These metrics can significantly

affect the limit of detection of particular chemical signatures,

particularly in narrow regions of interest in the spectrum

(Kimber & Kazarian, 2017). Spectra quality can be evaluated

by the wavenumber-specific variability and principal com-

ponent analysis (PCA) scores dispersion and loading vectors

(Baldock, Hawke, Sanderman, & MacDonald, 2013; Le Guil-

lou et al., 2015; Stumpe, Weihermüller, & Marschner, 2011).

To effectively address the impacts of experimental acquisi-

tion parameters on spectral quality, mid-DRIFTS qualitative

and predictive outcomes should be evaluated. Moreover, opti-

mizing these parameters while maintaining relevant spectral

features can increase laboratorial efficiency when measuring

soil properties. However, this optimization is based on trade-

offs between acquisition time and computational demand and

the ability to properly represent spectral features of a sample.

Spectral resolution refers to the ability of an instrument to

distinguish spectral features in close proximity. The broader

the resolution, the less sharp the spectral features will be,

and consequently a spectrum is less distinguishable for

Core Ideas
• DRIFTS has transformed soil analyses as a high-

throughput technique.

• Co-added scan number and resolution are core

parameters in mid-DRIFTS.

• Both parameters affected spectral variability and

chemometric outcomes from mid-DRIFTS.

• Vetting acquisition parameters allows optimizing

soil analysis with mid-DRIFTS.

specific features that are close together. In a high-resolution

spectrum, features are well resolved because the data point

spacing is sufficiently small to allow these features to be dis-

tinguished (Smith, 2011). As resolution increases (<1 cm−1),

the number of data points, i.e., specific wavenumbers (Work-

man, 2016), the time for spectra acquisition, and the computa-

tional demand to process data also increase. Generally, a sam-

ple with many polar bonds of diverse functional groups has

broad spectral features, and a sample with fewer functional

groups (e.g., pure compounds) has narrow spectral features.

Due to the large number of distinct chemical molecules in

heterogeneous samples such as soils, their absorbance values

are typically 10 cm−1 or greater, so a spectrum with a resolu-

tion of 4 cm−1 will easily resolve most bands (Smith, 2011).

Using higher resolutions than needed would result in longer

measurement time and the appearance of peaks would be simi-

lar (Smith, 2011). Experimental acquisition parameters there-

fore require optimization to maximize analytical efficiency by

broadening resolution up to the limit where there is no loss of

relevant spectral information.

A potential drawback of obtaining high-resolution mid-

infrared spectra is presence of greater noise than low-

resolution spectra (Smith, 2011). Noise is defined as ran-

dom fluctuations below and above the baseline and it can

be generated by several sources from the instrument or sam-

ple. Detector noise and other instrumental sources of elec-

tronic and mechanical noise can affect measurements in mid-

DRIFTS (Schwartz, Eshel, & Ben-Dor, 2011), and these are

independent of the sample characteristics. In soil samples for

which very weak spectral features are used for chemometric

modeling, these noise factors can alter the use of a selected

spectral model for a wide range of spectrometers and users

(Gholizadeh, Luboš, Saberioon, & Vašát, 2013). In a hypo-

thetical optimal condition, the random (detector) noise in the

spectrum is reduced by the square root of the number of co-

added scans (Cazes, 2004), so four scans would have half

the noise and twice the signal to noise ratio as compared to

a single scan (Workman, 2016). This situation only occurs

for highly reproducible data, where there is an exact in-phase
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registration between interferograms (Cazes, 2004). The num-

ber of co-added scans should be estimated for each type of

sample and/or spectrum (Workman, 2016), and in less repro-

ducible samples such as soil spectra, one should expect reduc-

tions in random (detector) noise by increasing the number

of co-added scans. As a tradeoff, increasing the number of

co-added scans increase the time of spectra acquisition, and

therefore, finding the smallest number of co-added scans that

do not compromise the spectra usage can optimize analytical

efficiency. Quantifying the impact of the number of co-added

scans on the qualitative analysis (e.g., specific peak areas),

and prediction performance (uncertainty/error of predictions),

stands to inform decision making on tradeoffs of acquisition

parameters for mid-DRIFTS of soils.

Given the intrinsic soil matrix complexity and variability,

mid-DRIFTS of soils may require a clearer understanding

of how experimental acquisition parameters affect spectral

quality, and how these parameters affect spectra qualita-

tive characterization, and predictive performance of soil

properties. The objective of this study is to determine more

suitable experimental parameters to optimize qualitative

and predictive applications of high-throughput mid-DRIFTS

in soil sciences. We first performed a systematic literature

review to evaluate how experimental parameters (wavenum-

ber range and resolution, number of co-added scans, spectra

replicates, and soil grinding) have affected prediction per-

formances of mid-DRIFTS using total soil carbon or organic

carbon as reference variables. We then experimentally tested

how the qualitative characterization of soil mineral and

organic composition, and predictive (quantitative) perfor-

mance of different soil variables (total organic carbon, clay,

pH, permanganate oxidizable carbon) are affected by the

wavenumber resolution, and number of co-added scans, using

diverse soil sets representative of the US Midwest.

2 MATERIALS AND METHODS

2.1 Systematic review

A systematic literature review was conducted to evaluate

how acquisition parameters (wavenumber range, wavenum-

ber resolution, and number of co-added scans), replicates,

and sample preparation have affected the prediction perfor-

mance in mid-DRIFTS of soils. Soil total carbon (TC) or

total organic carbon (TOC) were used as reference variables

given the widespread availability of studies that measured

these soil properties and evaluated the predictive applications

of mid-DRIFTS.

A database search was conducted to identify published

papers that predicted soil TC or TOC with mid-DRIFTS.

We used the Web of Knowledge platform and the follow-

ing search terms were included to locate the studies: (dif-

fuse reflectance infrared Fourier transform or mid-infrared

or mid-IR or middle-infrared) AND (soil) AND (carbon).

The search was constrained for studies published since 2013

to 2018 from which 265 results were obtained (excluding

patents). We followed pre-defined eligibility criteria to select

studies that included: mid-infrared spectra region; predictive

applications of mid-DRIFTS (non-qualitative/compositional

analysis); soil TC or TOC values (TOC was used when both

were available); neat soil samples (non-sediments and non-

liquid samples); sieved/ground samples (non-intact cores);

and laboratory-based measurements. Field based measure-

ments or laboratory-based measurements of intact soil cores

were excluded. When studies evaluated separately or together

more than one geographic region, the validation results

including all regions were used, or ranges from the different

regions were presented when overall prediction was not avail-

able. When studies compared different grinding sizes, all data

available was extracted, and ranges were presented. When

studies combined mid-infrared with other infrared regions

(i.e., visible/near-infrared), results from those other regions

were excluded. Different infrared spectroscopic approaches

such as transmission, photoacoustic (PA) or attenuated total

reflection (ATR) were excluded from the survey. Given that

the different spectroscopy techniques may be sample- and

purpose-specific, it can potentially generate different spectral

outcomes (Smith, 2011), and as the DRIFTS application is

currently a more widely used technique in soil sciences, we

focused solely on DRIFTS.

From selected papers, we compiled data regarding the fol-

lowing information: wavenumber range, wavenumber resolu-

tion, number of co-added scans, sample/spectra replication,

grinding size, number of calibration and validation samples,

root mean squared error (RMSE), coefficient of determination

(R2), and the measured range of soil TC or TOC (Table 1).

If the spectra wavenumber range was further reduced (e.g.,

to eliminate noisy regions) for chemometric reasons, this

reduced wavenumber region is presented here. Root mean

squared errors and R2 were extracted from validation results

(independent datasets), or cross-validation when independent

validation coefficients were not available.

2.2 Laboratory experiments

2.2.1 Soils and study area

We selected 400 soil samples from the National Coopera-

tive Soil Survey (NCSS) distributed over four representa-

tive physiographic regions of the US Midwest: Glaciated

Allegheny Plateau, Unglaciated Allegheny Plateau, Till

Plains, and Huron-Erie Lake Plains, and covered a wide vari-

ety of land-uses including natural and anthropically modi-

fied ecosystems. Within each physiographic region, 100 soil
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F I G U R E 1 Summary statistics of soil variables covering four physiographic regions of the US Midwest (n = 100 for each region). The bars

represent the actual frequency across all regions (n = 400) and lines represent the estimated normal distribution for each region. TOC, total organic

carbon; POXC, permanganate oxidizable carbon

samples were systematically selected to cover a broad range

of measured values (Figure 1). Soils were originally sam-

pled from different genetic horizons over the period from

1950–2012 as part of the NCSS in Ohio. Soil samples

were analyzed and archived at the Ohio State University in

collaboration with the NCSS. Data was digitally available

at https://ncsslabdatamart.sc.egov.usda.gov/. Samples were

assigned to a physiographic region based on their county loca-

tion. Samples from counties containing two or more physio-

graphic regions were not included.

2.2.2 Soil analysis

Laboratory soil analysis for soil texture, pH, and TOC fol-

lowed the methods described in the Soil Survey Laboratory

Information Manual (Burt, 2011; SSIR no. 42, Soil Survey

Staff, 2014). Briefly, soil particle size distribution (soil tex-

ture) was determined using the pipet method (method 3A1),

and the variables used in this study were total sand (<2.0 mm

and >0.05 mm) and total clay (<0.002 mm). Soil pH was

measured in a 1:1 (v/v) soil/water mixture (method 4C1a2a),

and TC was measured by dry combustion (method 6A2a).

Total carbon was measured in a Lindberg tube furnace heated

to 900◦C, with evolved CO2 being swept by an oxygen car-

rier gas to an Ascarite filled Nesbitt absorption bulb. Weight

change of the absorption bulb was recorded with a microbal-

ance and converted to TC. In soils without carbonates, TC

was taken as TOC, while in soils with carbonates, inor-

ganic carbon was determined separately by the gasometric

method (Dreimanis, 1962) and inorganic carbon content sub-

tracted from TC to yield TOC. Permanganate oxidizable car-

bon (POXC, mg kg soil−1) was measured based on the meth-

ods of Weil, Islam, Stine, Gruver, and Samson-Liebig (2003)

adapted by Culman, Freeman, and Snapp (2012). In brief,

20 mL of 0.02 mol L−1 KMnO4 was added to 50 mL tubes

containing 2.5 g air-dried soil. The tubes were shaken for

2 min at 240 oscillations min−1 then allowed to settle for

10 min. After settling, 0.5 mL of the supernatant was diluted

with 49.5 mL of deionized water and sample absorbance was

quantified at 550 nm on a spectrophotometer.

2.2.3 Sample preparation for DRIFTS

The samples from the soil survey were originally crushed and

sieved to <2.0 mm and stored in an air-dried state. Before

acquiring spectra, <2.0 mm soils were dried for >48 h at 40◦C

and at 12–14% relative humidity. This temperature (40◦C) is

suitable to evaluate SOM composition (e.g., Demyan et al.,

2013). To analyze samples in the mid-DRIFTS instrument,

24-well anodized aluminum plates were used. These plates

fit 24 removable polystyrene sample cups with a top circular

opening area of 10-mm diameter and 5.5-mL volume (with no

cap). The sample cups were loaded by over-filling the cups

with soil, then tapping the cup side gently three times to set-

tle the soil into the cup, and finally smoothing the surface

by scraping excess soil with the narrow edge of a stainless

steel spatula. The soil was not packed or compressed into the

well other than by tapping and scrapping to avoid artifacts of

matrix density (Terhoeven-Urselmans, Vagen, Spaargaren, &

Shepherd, 2010).

2.2.4 DRIFTS instrument set-up

Spectra were obtained using an X,Y Autosampler (Pike Tech-

nologies Inc., Madison, WI) coupled with a Nicolet iS50

spectrometer equipped with a diffuse reflectance accessory

(Thermo Fisher Scientific Inc., Waltham, MA). We used FT-

IR grade (≥99% trace metals basis) potassium bromide (KBr)

(Sigma-Aldrich Inc., St. Louis, MO) for background spectrum

collected at the beginning of each plate reading (i.e., every

23 samples). All measurements were conducted from 4000 to

https://ncsslabdatamart.sc.egov.usda.gov/
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400 cm−1, and we further reduced the spectral data to 4000 to

700 cm−1 to eliminate increased noise at the spectrum edge, to

conduct spectral analysis and predictions. Each soil subsam-

ple (one sample cup) was measured four times to generate the

spectral replicates that were further averaged prior to quali-

tative analysis and predictions. The four readings were done

using the random oversampling motion function of the X,Y

Autosampler (within a 3-mm diameter of the sample cup’s

centroid), configured in AutoPro software (Pike Technologies

Inc., Madison, WI).

2.2.5 Number of co-added scans and
wavenumber resolution

To test how different acquisition parameters affect the spec-

tral quality and outcomes from mid-DRIFTS, soil samples

(n = 400) were analyzed using: (a) 8, 16, and 24 co-added

scans, and (b) 32 cm−1, 16 cm−1, 8 cm−1, and 4 cm−1

wavenumber resolutions. The same cups/plates loaded with

the same soil samples were used for all analysis. Additional

details including the number of spectral bands, time of spec-

tra acquisition, and file size are summarized in Table 2. The

number of co-added scans was obtained using the greatest res-

olution (4 cm−1 resolution), and the wavenumber resolution

was collected using the greatest number of co-added scans

(24 co-added scans). Data was at narrower spacing for zero

filling/interpolation purposes.

2.2.6 Spectral properties assessment

Spectral characterization of absorbance (log R−1, where R
is reflectance) spectra was summarized using principal com-

ponents analysis (PCA) with spectra centered to zero mean

and unit variance. We used the iterative NIPALS algorithm

(Martens & Naes, 1990) to derive the principal components

(R package ‘chemometrics’, Varmuza & Filzmoser, 2009). We

plotted the first two principal component scores and loadings

to evaluate the effects of treatments on the spectra dispersion

and wavenumber-specific loadings distribution. These PCA

loadings are useful to identify key wavenumbers that explain

variability in the spectra.

To compare the spectral dispersion among the sources

of variation, we first evaluated the spectra for heterogeneity

using the Levene’s test for homogeneity of variances, and

then used a permutational multivariate analysis of vari-

ance to test for the partitioning of the Euclidean distance

matrices (R package ‘Vegan’, Oksanen, 2019). In both

tests, the number of co-added scans and resolution were

included as sources of variance, and the first two principal

components scores (PC-1 and PC-2) from PCA-NIPALS

were evaluated. The spectral scores were dimensioned using

the Mahalanobis distances (Mardia, Kent, & Bibby, 1979;

Oksanen, 2019).

Variability in the spectra was assessed by computing the

wavenumber-specific standard deviations of the apparent

absorbances (Le Guillou et al., 2015) in the four analytical

replicates from each sample, and then deriving average stan-

dard deviation spectra for each treatment (R package ‘stats’,

R Core Team, 2016).

2.2.7 Qualitative evaluation

Qualitative characterization of mineral and organic functional

groups was assessed by integrating peak areas using the local

baseline technique, as described by Demyan et al. (2012). The

local baseline is a virtual straight line added to the base of

peak connecting the peak left and right limits. Local peak

areas were determined in the absorbance spectra using the

triangle method (R package ‘geometry’, Sterratt, 2019). Ten

functional groups were selected to evaluate the impact of

number of co-added scans and resolution. The selected min-

eral components were the O-H functional group of hydroxyl

stretching (kaolinite and others) (peak ranging from/to 3723–

3686 cm−1, Russell, 1987), Si-O functional group of 2:1

layer alumino-silicates (3686–3565 cm−1, Nguyen, Janik, &

Raupach, 1991), CO3 functional group of calcite (2650–

2420 cm−1, Nguyen et al., 1991), Si-O functional group of

quartz (three peaks between 2080 and 1754 cm−1, Nguyen

et al., 1991; these peaks can potentially overlap with organic

functional groups as described in Janik, Skemstad, Shepherd,

and Spouncer (2007) and Spaccini & Piccolo, 2007), CO3

functional group of carbonates (890–860 cm−1, Tatzber et al.,

2007), fundamental Si-O functional group stretching (854–

780 cm−1, Soda, 1961), and CO3 functional group of dolomite

(735–723 cm−1, Tatzber et al., 2007) and calcite (723–

707 cm−1, Tatzber et al., 2007). The selected organic func-

tional groups were the aliphatic C-H of methyl and methly-

lene groups (3010–2800, Orlov, 1986; potentially overlapping

with the mineral component calcite, Nguyen et al., 1991), and

aromatic C=C functional group stretch and/or asymmetric-

COO-stretch (humic and fulvic acid) (1660–1580 cm−1, Baes

& Bloom, 1989).

2.2.8 Prediction model calibration and
independent validation

Several spectral treatments were evaluated for ability to

extract vibrational information from the spectra, and increase

model robustness, accuracy, repeatability, and reproducibil-

ity (Stevens & Ramirez-Lopez, 2015). Treatments tested

were Savitzky–Golay smoothing and derivative, GapSeg-

ment derivative, continuum-removal, detrend normalization,
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T A B L E 2 Description of acquisition parameters used on diffuse reflectance infrared Fourier transform spectroscopy (mid-DRIFTS) of soils.

The wavenumber range was from 4000 to 700 cm−1

Acquisitions
parameters

Co-added
scans Resolution

Number of
spectral
bandsa

Time, in
seconds per
spectrum

File size, in
kilobites per
spectrumb

Co-added scans

8 scans 8 scans 4 cm−1 825 13.2 217

16 scans 16 scans 4 cm−1 825 27.0 217

24 scans 24 scans 4 cm−1 825 40.2 217

Resolution

4 cm−1 24 scans 4 cm−1 825 40.2 217

8 cm−1 24 scans 8 cm−1 413 24 109

16 cm−1 24 scans 16 cm−1 206 16.8 54

32 cm−1 24 scans 32 cm−1 103 12.6 27

aData were at narrower spacing for zero filling/interpolation purposes.
bFile size in comma separated values (.csv) format.

standard normal variate (SNV), block scaling, sum of

squares block weighting, standard normal variate transforma-

tion (Fearn, 2008), and detrend normalization after filtering

(Savitzky–Golay and Gap-Segment) (R package ‘prospectr’,

Stevens & Ramirez-Lopez, 2015).

Calibration models were developed on a representative

training set (75% of the dataset) selected using the Kennard–

Stone sampling algorithm (Kennard & Stone, 1969) to explain

≥95% of the total variance and validated on the remaining

samples (25% of the dataset) (R package ‘prospectr’, Stevens

& Ramirez-Lopez, 2015). This selection process was sepa-

rately performed for each one of the four physiographic loca-

tions (n = 100 each) for a final calibration set of n = 300 and

validation set of n = 100.

We trained the support vector machine regression (SVM)

models with different algorithms on the calibration sets; these

were subsequently tested on the independent validation set

(R package ‘e1071’, Meyer, Dimitriadou, Hornik, Weinges-

sel, & Leisch, 2015). Four kernels (classes of algorithms in

SVM) were tested, including linear, polynomial (second and

third degrees), radial basis, and sigmoid (Karatzoglou, Meyer,

& Hornik, 2006). These kernels were tested with all spectral

treatments previously mentioned, and both spectra and pre-

dictor were scaled to zero mean and unit variance prior to

calibration (Meyer et al., 2015). Best models were selected

for each variable and treatment based on the lowest root mean

squared error (RMSEv), greatest residual prediction deviation

(RPDv), and greatest coefficient of determination (R2) of the

independent validation datasets.

To compare the prediction outcomes obtained with differ-

ent resolutions and numbers of co-added scans, the RMSE

of the validation data-sets (RMSEv) (n = 100) were boot-

strapped using the ordinary resampling method and 99 repli-

cates (Davison & Hinkley, 1997; R package ‘boot’, Canty,

2017). Multiple means comparison was done by the estimated

marginal means (least-squares means) (R package ‘emmeans’,

Lenth, 2019).

2.2.9 Data processing and statistical analyses

Data was processed and analyzed with R version 3.3.3 (R

Foundation for Statistical Computing, Vienna, Austria) using

the Ohio Supercomputer Center (OSC, 1987) computing

resources. The packages used were ‘boot’ (Canty, 2017),

‘chemometrics’ (Varmuza & Filzmoser, 2009), ‘Chemo-

metricsWithR’ (Wehrens, 2011), ‘emmeans’ (Lenth, 2019),

‘e1071’ (Meyer et al., 2015), ‘geometry’ (Sterratt, 2019),

‘prospectr’ (Stevens & Ramirez-Lopez, 2015), ‘Vegan’

(Oksanen, 2019), and ‘stats’ (R Core Team, 2016).

3 RESULTS

3.1 Systematic review

The systematic review identified a wide range of acqui-

sition parameters being used across studies employing

mid-DRIFTS for soil analyses (Table 1). These include

variations in wavenumber range (ranging 180–7800 cm−1),

resolution (2–16 cm−1), number of co-added scans (16–200

scans), types of spectra replication (in the same or different

soil subsamples), numbers of spectral replicates, and different

grinding sizes of soils (from 0.1–2 mm). The number of

studies which did not report information regarding these

parameters was considerable, in particular the type and

number of replicates. Out of 32 studies, there were 11 studies

that omitted either wavenumber resolution or number of

co-added scans and 16 studies which gave no information on

spectral replication. Moreover, no clear relationship between
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acquisition parameters and predictive performance of soil

TC or TOC could be established. This response was antici-

pated given the many variables that could potentially affect

accuracy of predictions from mid-DRIFTS. These include

the variability of acquisition parameters (Table 1), but also

other factors such as geographical scale, intrinsic variability

of soils, sample pre-treatments (e.g., grinding), chemometric

methods including multivariate regression models and

spectral pretreatments, number of samples, and quality of the

conventional measurements. Comparing prediction perfor-

mances across studies, there were results with great prediction

accuracy (r2 = 0.95–0.99) using relatively wider resolutions

(8 cm−1) (Hobley, Baldock, & Wilson, 2016; Wilson, King,

Growns, & Veeragathipillai, 2017), while other studies

obtained less satisfactory accuracies (r2 = 0.75–0.78) with

high-resolution spectra (2 cm−1) (Chen, Dong, Li, & Wang,

2017; O’Rourke, Minasny, Holden, & McBratney, 2016).

Other studies that used similar resolutions (e.g., 4 cm−1) but

different number of co-added scans (16 or 64 scans) also

obtained improved prediction accuracy (r2 = 0.96–0.99)

(Madhavan et al., 2017; Mirzaeitalarposhti et al., 2015).

Finally, studies that used a relatively higher number of co-

added scans (100 or 200 scans), did not necessarily improve

prediction accuracy (r2 = 0.73–0.78) (Hutengs, Ludwig,

Eisele, & Vohland, 2018; Vohland, Ludwig, Thiele-Bruhn, &

Ludwig, 2014).

3.2 Spectral properties

Evaluating our experimental results of soils from diverse

physiographic regions of the US Midwest, the absorbance

spectra and spectral variability were affected by the num-

ber of co-added scans and resolution. Decreasing the num-

ber of co-added scans increased the presence of spectral arti-

facts and decreased the mid-DRIFTS sensitivity (resolution)

to certain functional groups (Supplemental Fig. S1). Pres-

ence of spectral artifacts, that is, intense and sharp absorbance

values that do not characterize a peak, increased mostly in

wavenumbers <1750 cm−1. Moreover, decreasing the num-

ber of co-added scans changed the sensitivity to certain func-

tional groups. For instance, the peak attributed to CO3 func-

tional group of calcite (2650–2420 cm−1, Nguyen et al., 1991)

was not as clearly resolved in the spectra maximum (great-

est absorbances in spectra across all wavenumbers) using 8

co-added scans, but the same peak was present in the spectra

maximum of 16 and 24 co-added scans (Supplemental Fig.

S1). The PCA scores dispersion and loading vectors were not

affected by the different numbers of co-added scans (Supple-

mental Fig. S2). There was no significant segregation among

scores of different numbers of co-added scans in the permuta-

tional multivariate analysis of variance (Heterogeneity Test:

p = 0.74; MANOVA: R2 = 0.004, F = 2.52, 1197 degrees

of freedom, p = 0.07). The loading vectors of the PCA first

two components (PC-1 and PC-2) had a similar distribution

across the spectra comparing the different numbers of co-

added scans. There were subtle differences in loading inten-

sity in specific regions of the spectrum, but loadings mostly

overlapped across the mid-infrared using different number of

co-added scans.

The spectral variability as given by the specific-

wavenumber standard deviations increased by decreasing the

number of co-added scans, and it was markedly pronounced

in specific regions of the spectrum (Figure 2). The main peaks

affected by the increased variability were between wavenum-

bers 1750 and 1250 cm−1, and wavenumbers <900 cm−1.

There was composition of several high standard deviations

between 1750 and 1250 cm−1, a region of peaks that include

C=O functional group vibrations of carboxyl, aldehydes,

ketones, and esters groups (Hesse, Meier, & Zeeh, 2005),

aromatic C=C stretch and/or asymmetric-COO-stretch of

humic and fulvic acid (Baes & Bloom, 1989), and symmetric-

COO- stretch and/or-CH bending of aliphatics of fulvic acid.

Higher standard deviations were also observed between

900 and 700 cm−1, a region that includes peaks of CO3

functional group of carbonates (890–860 cm−1, Tatzber

et al., 2007), fundamental Si-O functional group stretching

(854–780 cm−1, Soda, 1961), and CO3 functional group

of both dolomite (735–723 cm−1, Tatzber et al., 2007) and

calcite (723–707 cm−1, Tatzber et al., 2007).

Broadening resolution had a smoothing effect on the

spectra and consequently a strong influence on specific

regions of interest for soil analysis. Notably, smaller peaks

were smoothed or flattened when insufficient spatial res-

olution was used, and peaks in general had a decrease in

size, especially in lower resolutions of 16 and 32 cm−1.

Additional details about local peak area characterization are

in the following section under qualitative characterization of

spectra (see Predictive and Qualitative Outcomes). There was

significant heterogeneity of variances among PCA scores

of different resolutions (Heterogeneity Test: p <0.001);

however, the segregation among resolutions in the permuta-

tional multivariate analysis of variance was not significant,

possibly because PCA scores were completely overlapped

(MANOVA: R2
<0.001, F <0.001 on 1596 degrees of

freedom, p >0.99) (Figure 3). The PCA loading vectors were

more strongly affected by resolution than the number of

co-added scans. Following the previously described charac-

teristics of absorbance spectra, loading vector smoothness

increased with broadening resolution, but loadings distribu-

tion across the wavenumbers followed a similar trend/shape

using different resolutions. There was a clear separation of
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F I G U R E 2 Specific-wavenumber standard deviation as affected by the number of co-added scans and spectral resolution in diffuse reflectance

infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS). The standard deviations were determined from four spectral

replicates of each soil subsample and later averaged across the 400 soil samples

F I G U R E 3 Absorbance spectra (offset by 0.3 units) (a) and principal component analysis (PCA, NIPALS algorithm) multivariate scores (b)

and loading vectors (c) of the first two principal components (PC-1, PC-2) as affected by spectral resolution (cm−1) in diffuse reflectance infrared

Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS)

loading intensity in the first two components of PCA. This

was characterized by a complete separation of loadings in

PC-1, and more negative or positive intensities in PC-2 as

resolutions broadened. Finally, the specific-wavenumber

standard deviations of different resolutions followed a similar

behavior to the one described for the 24 co-added scans, but

with increased smoothness as resolution increased.

3.3 Predictive and qualitative outcomes

The described spectral changes affected the qualitative char-

acterization of the spectra and prediction outcomes from

SVM models. The qualitative characterization of mineral

and organic functional groups was affected by the number

of co-added scans and resolution (Table 3). The Pearson
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T A B L E 3 Qualitative characterization of soil mineral and organic functional groups as affected by the number of co-added scans and spectral

resolution in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS). Pearson correlation coefficients

are between peak areas of the reference parameters (24 co-added scans or 4 cm−1 resolution) and different acquisition parameters

Peak limits Number of co-added scans Resolution
Left Right 24 16 8 4 8 16 32

Functional groups (peak assignment) cm−1 cm−1

O-H (3697 cm−1) 3723 3686 Ref.a 0.99 0.99 Ref. >0.99 0.97 0.97

Si-O (3630 cm−1) 3686 3565 Ref. >0.99 0.99 Ref. >0.99 0.98 0.94

Aliphatic C-H (2930 cm−1) 3010 2800 Ref. 0.99 0.99 Ref. >0.99 0.97 0.97

CO3 (2512 cm−1) 2650 2420 Ref. >0.99 >0.99 Ref. >0.99 >0.99 >0.99

Si-O/Quartz (1995/1870/1796 cm−1) 2080 1754 Ref. 0.98 0.97 Ref. >0.99 0.96 0.96

Aromatic C = C (1620 cm−1) 1660 1580 Ref. 0.93 0.89 Ref. >0.99 0.91 0.91

CO3 (875 cm−1) 890 860 Ref. 0.90 0.82 Ref. >0.99 0.86 0.63

Si-O (810 cm−1) 854 780 Ref. 0.80 0.70 Ref. >0.99 0.80 0.78

CO3/dolomite (730 cm−1) 735 723 Ref. 0.10 0.39 Ref. >0.99 0.04 −0.13

CO3/calcite (713 cm−1) 723 707 Ref. 0.20 0.10 Ref. >0.99 0.17 0.37

aReference parameter.

correlation coefficients showed that as the number of co-

added scans was reduced, peaks with smaller areas located

at wavenumbers <1660 cm−1 were less correlated to the peak

areas obtained with 24 co-added scans. These less correlated

peaks from spectra with fewer co-added scans (16 or 8 scans)

included the selected aromatic C=C functional group (1660–

1580 cm−1, Baes & Bloom, 1989) and carbonate CO3 func-

tional group (890–860 cm−1, Tatzber et al., 2007), mineral

silicate Si-O functional group (854–780 cm−1, Soda, 1961),

and CO3 functional of both dolomite (735–723 cm−1, Tatzber

et al., 2007) and calcite (723–707 cm−1, Tatzber et al., 2007).

The qualitative characterization of mineral and organic

functional groups was also affected by broadening res-

olutions. No difference was found across all evaluated

peaks between resolutions 4 and 8 cm−1, but as resolution

decreased to 16 and 32 cm−1, peaks located at wavenum-

bers <1660 cm−1 were less correlated to peaks obtained with

4 cm−1 resolution. These affected peaks were from the CO3

functional group of carbonates (890–860 cm−1, Tatzber et al.,

2007), fundamental Si-O functional group (854–780 cm−1,

Soda, 1961), and CO3 functional group of both dolomite

(735–723 cm−1, Tatzber et al., 2007) and calcite (723–

707 cm−1, Tatzber et al., 2007). Moreover, most local peak

areas were reduced in broader resolutions when compared

to high-resolution spectra (i.e., 4 cm−1), with the degree of

reduction depending on each measured peak. The degree of

reductions in peak areas was determined from the slope of the

linear relation (null intercept) between peak areas with 4 cm−1

resolution versus peak areas with the broader resolution treat-

ments. For example, Si-O (3686–3565 cm−1, Nguyen et al.,

1991), one of the most severely affected peaks in terms of

local peak area size reduction when compared to the resolu-

tion of 4 cm−1, was reduced by 36.3% with 16 cm−1 resolu-

tion and 98.3% with 32 cm−1 resolution, but did not change

(slope = 1) when compared to 8 cm−1 resolution.

Increasing the number of co-added scans, from 8 to 24,

improved prediction accuracy for most soil variables in

independent validation sets (Table 4; Figure 4). Based on

validation coefficients, greatest prediction accuracies were

obtained for soil pH, TOC, and POXC with 24 co-added

scans, while at least 16 co-added scans were needed for

clay and sand (Figure 4). Calibration coefficients did not

necessarily follow the same magnitudes of change as the

validation sets, but better accuracies were found with at least

16 co-added scans for sand, TOC, and POXC.

In contrast, broadening resolution from 4 to 32 cm−1

improved prediction accuracy for all soil variables in inde-

pendent validation sets (Table 5; Figure 4). Calibration coef-

ficients had a more skewed distribution as affected by resolu-

tion, and better accuracies were not necessarily obtained from

spectra with broader resolution. These differences between

calibration and validation sets, as affected by either the num-

ber of co-added scans or resolution, could be due to the cri-

teria used to select best performing models, which was done

based on validation statistical coefficients. Moreover, differ-

ences in distribution of soil variables between those two sets,

characterized by wider ranges and variability in calibration

sets, could have contributed to differences between calibra-

tion and validation coefficients in response to mid-DRIFTS

acquisition parameters.

4 DISCUSSION

Diffuse reflectance infrared Fourier transform spectroscopy

is an effective method for rapid soil analysis for both
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T A B L E 4 Soil properties prediction performance using different number of co-added scans in diffuse reflectance infrared Fourier transform

spectroscopy in the mid-infrared region (mid-DRIFTS). Spectra were acquired with 4 cm−1 resolution and four spectral replicates in each soil sample

Calibration (training set n = 300) Validation (test set n = 100)

Soil property
Co-added
scans RMSEa RPD R2 RMSEV RPDV R2

V

Clay (g kg−1) 8 scans 32.5 4.46 0.96 38.4 2.98 0.87

16 scans 51.2 2.81 0.90 35.1 3.25 0.91

24 scans 32.4 4.45 0.96 40.8 2.08 0.82

Sand (g kg−1) 8 scans 80.2 2.64 0.89 86.5 1.97 0.80

16 scans 39.0 5.82 0.97 82.2 2.05 0.79

24 scans 50.3 4.26 0.95 79.6 2.34 0.87

pH 8 scans 0.30 3.14 0.92 0.49 1.77 0.78

16 scans 0.42 2.20 0.85 0.48 1.98 0.79

24 scans 0.44 2.16 0.85 0.44 2.12 0.81

Total organic C (%) 8 scans 0.72 1.00 0.67 0.20 2.60 0.89

16 scans 0.56 1.72 0.80 0.20 3.07 0.89

24 scans 0.55 1.70 0.80 0.16 4.04 0.93

Permanganate oxidizable C (mg kg−1) 8 scans 177 1.11 0.70 93 1.55 0.79

16 scans 101 2.63 0.90 80 2.78 0.89

24 scans 105 2.45 0.89 72 3.07 0.92

aRMSE, root mean squared error; RPD, residual prediction deviation; R2, coefficient of determination.

qualitative and quantitative purposes. This is mostly due to

the potential of obtaining accurate results along with the

often-reduced time, labor, and costs when estimating soil

properties (Gholizadeh et al., 2013; Soriano-Disla, Janik,

Viscarra Rossel, MacDonald, & McLaughlin, 2014). These

factors have enabled scientists and other stakeholders to work

with larger sets of soil samples, in successive samplings, ulti-

mately leading to a better understanding of ecosystems func-

tioning and services as driven by soil processes (Adhikari

& Hartemink, 2016; Vereecken et al., 2016). These fac-

tors have promoted mid-DRIFTS usage across the globe,

but at the same time, methods associated with the technique

have been used indiscriminately. This can be verified by

the wide range of experimental approaches that have been

used in mid-DRIFTS of soils during the last years, but also

to the lack of information in some specific studies regard-

ing these experimental parameters (Table 1). Though this

does not mean that a universal set of acquisition parame-

ters should be used in all studies, but rather there should

be clarity on the effects of such parameters, reporting of

parameter details, and justification for their selection. This is

especially the case when parameters are further away from

the current literature based norms of spectra acquisition,

such as lower number of co-added scans, broader resolu-

tions, lower number of replicates or lack thereof, and coarser

grinding sizes.

The comparison across different studies showed that there

is no clear effect of the experimental parameters in mid-

DRIFTS prediction performance (Table 1), likely due to the

potential influence of many factors that can affect predictive

outcomes. These factors are soil sample properties, sample

preparation, instrument utilization, and chemometrics, all of

which can potentially affect outcomes from mid-DRIFTS. Yet

even with such variability, there is no clarity on what exper-

imental acquisition parameters should be used to produce

accurate outcomes from mid-DRIFTS of soils, and more-

over, what parameters can be optimized to make the tech-

nique even more efficient when measuring soil samples. If

there is no difference in using broader resolutions and/or

lower number of co-added scans, that means that those param-

eters could be optimized to reduce time and computation

demand while acquiring spectra to improve efficiency of mea-

suring soil properties in mid-DRIFTS. However, such opti-

mization should be understood and quantified, a priori, on

how adjusting acquisition parameters leads to changes on

spectral quality, qualitative characterization of spectra, and

prediction performance.

Our experimental findings indicated that both the number

of co-added scans and resolution affected spectral quality and

outcomes from mid-DRIFTS of soils. Increasing the number

of co-added scans from 8 to 24 decreased both the variabil-

ity and presence of spectral artifacts (Figure 2; Supplemen-

tal Fig. S1 and S2). This effect increased the ability to char-

acterize peaks at specific regions of the spectrum (Table 3)

and improved multivariate model prediction performance for

most soil variables (Table 4; Figure 4). The spectral resolution

had a contrasting effect to the number of co-added scans, indi-

cating possibilities for increasing laboratorial efficiency. This
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F I G U R E 4 Bootstrapped root mean squared error (RMSEV) of

independent validation sets (n = 100) as affected by the number of

co-added scans and spectral resolutions (cm−1) in diffuse reflectance

infrared Fourier transform spectroscopy in the mid-infrared region

(mid-DRIFTS)

improvement was verified for the predictive applications of

mid-DRIFTS, up to the broad resolution of 32 cm−1 (Table 5;

Figure 4). However, broadening spectral resolution reduced

the ability to identify mineral and organic functional groups

based on specific spectral peaks (Table 3). Local peak area

quantification was limited by broadening spectral resolution

to more than 8 cm−1 (i.e., 16 and 32 cm−1).

The number of co-added scans had a direct impact over

spectral noise, presence of artifacts, and resolving peaks

(Figure 2; Supplemental Fig. S1). The peak resolve is par-

ticularly important for peaks with smaller local areas from

functional groups occurring in lower concentration in soils

(Table 3). In general, soils are predominantly composed of

minerals, and to lesser extent organic functional groups. This

means when analyzing a soil sample in mid-DRIFTS, mineral

absorbances dominate the spectrum. When an insufficient

number of co-added scans is used, either organic or mineral

functional groups that are present in smaller proportions in

soils can potentially be overlapped by those predominant

components. Similarly, instrumental noise can limit detection

of specific functional groups if noise is greater than spectral

signals. Therefore, better representing mid-infrared active

spectral features requires a certain number of co-added scans

that comprehensively resolves peaks and overcomes instru-

ment noise. According to our experimental results, fewer

numbers of co-added scans negatively impacted spectral

quality (Figure 2; Supplemental Fig. S1 and S2) and reduced

the ability to generate more accurate qualitative (Table 3) and

predictive outcomes from mid-DRIFTS (Table 4; Figure 4).

This predictive deterioration with less co-added scans was

verified for all soil variables in independent validation sets

and most variables in calibration sets.

Broadening resolution improved predictions for all eval-

uated soil properties (Table 5; Figure 4), but at the same

time compromised characterization of peaks with smaller

local peak areas (Table 3). Predictive improvements with

broader resolutions were verified for all soil variables in inde-

pendent validation sets, while calibration coefficients had a

less defined variation as affected by resolution. The predic-

tion performance could be compromised when resolution was

broadened to the point where there was degradation of spe-

cific peaks in the spectra. However, our results showed that

even with significant changes in peak areas with broaden-

ing spectral resolution (Table 3), the prediction performance

for all tested soil variables improved with broader resolutions

(Table 5; Figure 4). This suggests models are using informa-

tion from different parts of the spectrum that are not nec-

essarily related to those peaks/functional groups (surrogate

calibrations), or models are artificially learning to interpret

and be resilient to changes in peak sizes and, or, absence of

peaks. Some properties can be totally or partially predicted

in multivariate models because of their correlation or covari-

ation with other soil properties (Chang, Laird, Mausbach, &

Hurburgh, 2001; Stenberg, Viscarra Rossel, Mouazen, & Wet-

terlind, 2010). Following this rationale, TOC concentrations

are generally related to soil texture and mineralogy, and there-

fore TOC could be indirectly predicted by variations in peaks

attributed to, for example, O-H functional group of hydroxyl

stretching (kaolinite and others) (3723–3686 cm−1, Russell,

1987), Si-O functional group of 2:1 layer alumino-silicates

(3686–3565 cm−1, Nguyen et al., 1991). Moreover, if the peak

areas change in magnitude as resolution broadened, but there

is still a correlation between specific peak areas in narrow res-

olution and broad resolution spectra (Table 3), it is expected

that those models will still rely on those same peaks to inter-

pret spectra and predict soil properties.

In addition, reductions in redundancy of information

from different wavenumbers as well as in spectral disper-

sion and variability may have enabled models to predict

soil variables more accurately as resolution broadened.
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T A B L E 5 Soil properties prediction performance using different spectral resolutions in diffuse reflectance infrared Fourier transform

spectroscopy in the mid-infrared region (mid-DRIFTS). Spectra were acquired with 24 co-added scans and four spectral replicates in each soil sample

Calibration (training set n = 300) Validation (test set n = 100)
Soil property Resolution, cm−1 RMSEa RPD R2 RMSE RPD R2

Clay (g kg−1) 4 32.4 4.45 0.96 40.8 2.08 0.82

8 55.6 2.52 0.88 32.2 3.36 0.92

16 35.8 4.15 0.95 30.6 3.48 0.92

32 41.1 3.62 0.94 27.1 4.41 0.95

Sand (g kg−1) 4 50.3 4.26 0.95 79.6 2.34 0.87

8 55.7 3.92 0.94 69.3 2.70 0.88

16 59.7 3.81 0.94 56.6 2.20 0.85

32 63.5 3.62 0.93 46.6 3.22 0.91

pH 4 0.44 2.16 0.85 0.44 2.12 0.81

8 0.30 3.65 0.93 0.40 2.58 0.84

16 0.43 2.33 0.85 0.33 2.55 0.88

32 0.38 2.52 0.88 0.35 2.47 0.87

Total organic C (%) 4 0.55 1.70 0.80 0.16 4.04 0.93

8 0.57 1.62 0.79 0.19 3.51 0.92

16 0.56 1.70 0.80 0.15 4.22 0.94

32 0.58 1.64 0.78 0.15 4.47 0.94

Permanganate oxidizable C (mg kg−1) 4 105 2.45 0.89 72 3.07 0.92

8 84 3.00 0.93 74 2.82 0.87

16 88 3.25 0.92 64 3.44 0.92

32 92 3.08 0.91 54 4.59 0.95

aRMSE, root mean squared error; RPD, residual prediction deviation; R2, coefficient of determination.

Peng et al. (2014) reported that spectral data with narrow,

numerous wavenumbers are generally redundant and can

decrease efficiency of variable selection and modeling when

predicting soil properties. According to our results, this

redundancy effect was more clearly expressed in the PCA

loading vectors as affected by resolution (Figure c). Partic-

ularly in the PC-2, loadings peaks were more intense, either

negative or positive, and smoother in broader resolutions,

and explained a greater extent of spectral variability. Spectral

redundancy can also be reduced by selecting/eliminating

specific frequencies of the spectrum (e.g., Calderón et al.,

2017; Giacometti et al., 2013), but this was not evaluated in

our study.

Most studies that have evaluated effects of spectral reso-

lution on analysis of soil samples have employed the near-

infrared range of spectrum, and using spectral resampling

techniques to test different resolutions (e.g., Adeline et al.,

2017; Knadel et al., 2013; Peng et al., 2014), rather than

acquiring spectra with different resolutions with the instru-

ment. This pseudo-resolution approach can move the experi-

ment away from actual analytical evaluation (Blitz & Klarup,

2002), if not properly calibrated or adjusted according to

the results obtained from the instrument. Despite issues with

resampling methods as opposed to actual instrument mea-

surements, most evaluations showed no or positive effects

of broadening resolutions when predicting soil properties

using the near-infrared region (12000–4000 cm−1). Peng et al.

(2014) evaluated spectral sampling intervals from 1 to 10 nm

spectra and established that 9 nm best predicted soil TOC con-

tent using both SVM and partial least squares. Knadel et al.

(2013) and Mouazen, Saeys, Xing, de Baerdemaeker, and

Ramon (2005) found slight differences in prediction perfor-

mance for clay content, TOC, and soil moisture by comparing

spectrometers with different resolutions (1 to 10 nm) among

other spectral specifications and instrument variations. Yang

et al. (2012) showed that reduction to 21 resampled spectral

bands with 100 nm uniform spectral interval did not alter the

prediction performance of soil nitrogen and carbon. Lastly,

Adeline et al. (2017) showed that broadening resolution up to

60 nm did not affect prediction performances of soil physi-

cal and chemical properties. These authors argued that pre-

dictions could be distinguished according to their sensitivity

of soil variables to the spectral degradation, in which clay,

iron oxides and CaCO3 were driven by specific changes in

absorption features that are directly related to those properties,

whereas pH—a variable without direct presence of functional

groups and thus specific peaks—relied on variations of spec-

tral features of other functional groups (Adeline et al., 2017).

Comparison of prediction results (Tables 4 and 5) to the

other results identified in the systematic review (Table 1)
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demonstrates that we achieved comparable or better pre-

diction performances than most studies previously reported.

Prediction accuracy can be maintained or increased while

reducing time of spectra acquisitions and lowering computing

demand (Table 2). Based on this evaluation, we recommend

optimizing experimental settings to at least 24 co-added scans

and 8 cm−1 or higher resolution for quantitative and quali-

tative applications to minimize analysis costs and maximize

prediction accuracy of soil properties in mid-DRIFTS.

5 CONCLUSION

There is a wide variation of approaches being used for spectra

acquisition in mid-DRIFTS of soils, but the lack of a priori

determination of acquisition parameters means that hypothe-

sized trade-offs may not be optimized. Establishing best prac-

tices for mid-DRIFTS of soils is a high priority to enable

comparability of mid-DRIFTS results in soil testing. While

a single set of parameters may not be appropriate for all soils

and applications, more systematic approaches to identify prac-

tices that maximize precision, accuracy, and reproducibility of

mid-DRIFTS are needed in soil science. There should be more

scrutiny during the peer-review process on reporting infor-

mation of experimental acquisition parameters. Our results

suggest the number of co-added scans and resolution can

markedly affect spectral quality from mid-DRIFTS of soils,

and that different acquisition parameters can be used for qual-

itative or predictive applications. At least 24 co-added scans

may be necessary for both qualitative and predictive appli-

cations of mid-DRIFTS. A resolution of 8 cm−1 allows using

mid-DRIFTS for quantitative and qualitative applications, but

resolutions can be broadened to up to 32 cm−1 for predictive

applications only. The number of co-added scans and spectral

resolution dictate total spectra acquisition time and compu-

tational needs for data processing, and therefore can signif-

icantly affect laboratory capabilities to measure soil proper-

ties, especially for large sample sets. Analytical efficiency can

be optimized by setting acquisition parameters to maximize

qualitative and predictive applications of mid-DRIFTS in soil

analysis. Below we provide recommendations for optimizing

mid-DRIFTs for the purposes of measuring soil properties.

5.1 Recommendations for optimizing
mid-DRIFTS to measure soil properties

(I) Sample preparation

a. Sieving/grinding: Soil should be homogenized and

made to pass a <2.0-mm sieve (Deiss, Demyan,

& Culman, 2020; Janik, Soriano-Disla, Forrester,

& McLaughlin, 2016). Finely grinding soils (e.g.,

< 0.5 mm) often improves prediction accuracy of

soil properties (Le Guillou et al., 2015; Deiss et al.,

2020). Recommendations on how much grinding is

needed should consider the time and effort needed to

prepare soil samples as well as purpose of analysis

(Le Guillou et al., 2015).

b. Drying: Oven-drying samples until constant dry

mass immediately prior to analysis to minimize water

interference on spectra.

c. Loading process: Do not pack or compress soil into

the well other than by gentle tapping and surface

smoothing by scrapping to avoid artifacts of matrix

density (Terhoeven-Urselmans et al., 2010).

(II) Instrument setup for spectra acquisition

a. Types and number of analytical replicates (soil

subsamples/spectra replicates): We recommend at

least three replicates when using different soil sub-

samples (i.e., different wells) and at least four spec-

tral replicates when using the same soil subsample

(Deiss et al., 2020; Peng et al., 2014).

b. Background: potassium bromide (KBr) is a highly

hygroscopic material, and therefore KBr should be

dried beforehand and cooled/stored in a desiccator,

and KBr background spectrum should be collected

often, e.g., at every ∼20 to 25 samples.

c. Wavenumber range: Spectra are generally acquired

within the wavenumber range 4000 to 400 cm−1. Fur-

ther reduction of this range may be necessary to elim-

inate noise at the boundaries of the MIR spectrum

(edge of detector limit), e.g., 4000 to 700 cm−1.

d. Number of co-added scans: At least 24 co-added

scans may be necessary for both qualitative and pre-

dictive applications of mid-DRIFTS.

e. Spectral resolution: Spectra resolution choices may

depend on purpose of spectra utilization. A resolu-

tion of at least 8 cm−1 allows using mid-DRIFTS for

quantitative and qualitative applications, but resolu-

tions can be broadened to up to 32 cm−1 for predic-

tive applications only.

(III) Data processing (chemometrics)

a. Spectral treatment: Several mathematical spectral

treatments should be tested to determine which

treatment(s) most enhances spectral features and

increase multivariate regression models robust-

ness, accuracy, repeatability, and reproducibility

(Gholizadeh et al., 2013; Stevens & Ramirez-Lopez,

2015). Spectral treatment may be soil dataset- and

variable-specific.

b. Multivariate model: There are two classes of mul-

tivariate models: linear and the nonlinear (Wehrens,

2011) and their accuracies may depend on targeted

soil set and soil variable. Model choice should be

based on the accuracy of predictions on independent

validation sets.
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c. Calibration (training set): Calibration models must

developed on a representative portion of samples

based on location, soil variable distribution, spec-

tral properties, and any other source of variation in

a dataset.

d. Validation (test set): A representative and indepen-

dent validation set must be used. Though common,

cross-validation– using the same samples in the cal-

ibration set for the validation set—is not recom-

mended for predicting unknown future samples as

cross-validation likely overestimates calibration sta-

bility (Stenberg et al., 2010; Stumpe et al., 2011).

e. Prediction of variables of new samples (unknown

measured values): New samples must be spectrally

similar to the ones used in the spectral library to

train models (e.g., based on Euclidean distances

of a spectral matrix) (Hicks, Viscarra Rossel, &

Tuomi, 2015; Mirzaeitalarposhti, Demyan, Rasche,

Cadisch, & Müller, 2017). A continuous monitoring

scheme to validate predicted results with measured

traditional methods (e.g., wet chemistry) should

be established.

ACKNOWLEDGMENTS
We thank Bethany Herman, Nicole C. Hoekstra, Thomas

Doohan, Mason Gingery, Madison Campbell, and Meredith

Mann for their help in the laboratory. This research was sup-

ported by the Foundation for Food and Agricultural Research

and the School of Environment and Natural Resources at Ohio

State University.

ORCID
Leonardo Deiss https://orcid.org/0000-0003-2001-9238

Andrew J. Margenot
https://orcid.org/0000-0003-0185-8650

Steve W. Culman https://orcid.org/0000-0003-3985-257X

M. Scott Demyan https://orcid.org/0000-0001-6198-3774

R E F E R E N C E S
Adeline, K. R. M., Gomez, C., Gorretta, N., & Roger, J. M. (2017).

Predictive ability of soil properties to spectral degradation from

laboratory vis-NIR spectroscopy data. Geoderma, 288, 143–153.

https://doi.org/10.1016/j.geoderma.2016.11.010

Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosys-

tem services—A global review. Geoderma, 26, 101–111.

https://doi.org/10.1016/j.geoderma.2015.08.009

Araújo, S. R., Söderström, M., Eriksson, J., Isendahl, C., Stenborg, P., &

Demattê, J. A. M. (2015). Determining soil properties in Amazonian

Dark Earths by reflectance spectroscopy. Geoderma, 237–238, 308–

317. https://doi.org/10.1016/j.geoderma.2014.09.014

Azambre, B., Heintz, O., Schneider, M., Krzton, A., & Weber, J.

V. (1999). Optimization of some instrumental factors in diffuse

reflectance infrared Fourier transform spectroscopy. Talanta, 50,

359–365. https://doi.org/10.1016/S0039-9140(99)00026-0

Baes, A. U., & Bloom, P. R. (1989). Diffuse reflectance Fourier

transform infrared (DRIFT) of humic and fulvic acids.

Soil Science Society of America Journal, 53, 695–700.

https://doi.org/10.2136/sssaj1989.03615995005300030008x

Baldock, J. A., Hawke, B., Sanderman, J., & MacDonald, L. M.

(2013). Predicting contents of carbon and its component fractions in

Australian soils from diffuse reflectance mid-infrared spectra. Soil
Research, 51, 577–595. https://doi.org/10.1071/SR13077

Baldock, J. A., Beare, M. H., Curtin, D., & Hawke, B. (2018). Stocks,

composition and vulnerability to loss of soil organic carbon pre-

dicted using mid-infrared spectroscopy. Soil Research, 56, 468–480.

https://doi.org/10.1071/SR17221

Barthès, B. G., Kouakoua, E., Moulin, P., Hmaidi, K., Gallali,

T., Clairotte, M., … Chevallier, T. (2016). Studying the phys-

ical protection of soil carbon with quantitative infrared spec-

troscopy. Journal of Near Infrared Spectroscopy, 24, 199–214.

https://doi.org/10.1255/jnirs.1232

Blitz, J. P., & Klarup, D. G. (2002). Information in the instrumental

analysis laboratory. Journal of Chemical Education, 79, 1358–1360.

https://doi.org/10.1021/ed079p1358

Burt, R. (2011). Soil survey laboratory information manual. Soil Sur-

vey Investigations Report No. 45 (Version 2.0). USDA, Natu-

ral Resources Conservation Service, National Soil Survey Center,

Lincoln, NE.

Calderón, F. J., Culman, S., Six, J., Franzluebbers, A. J., Schipan-

ski, M., Beniston, J., … Kong, A. Y. Y. (2017). Quantification of

soil permanganate oxidizable carbon (POXC) using infrared spec-

troscopy. Soil Science Society of America Journal, 81, 277–288.

https://doi.org/10.2136/sssaj2016.07.0216

Canty, A. (2017). The Package ‘boot’: Reference manual. The Compre-

hensive R Archive Network, R Development Core Team, Vienna.

https://cran.r-project.org/web/packages/boot/boot.pdf (accessed 24

Jan. 2019).

Cazes, J. (2004). Analytical instrumentation handbook., Boca Raton:

CRC Press. https://doi.org/10.1201/9780849390395

Chang, C.-W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R.

(2001). Near- infrared reflectance spectroscopy–Principal compo-

nents regression analyses of soil properties. Soil Science Soci-
ety of America Journal, 65, 480–490. https://doi.org/10.2136/

sssaj2001.652480x

Chen, C., Dong, D., Li, Z., & Wang, X. (2017). A novel soil nutri-

ent detection method based on combined ATR and DRIFT mid-

infrared spectra. Analytical Methods, 9, 528–533. https://doi.org/

10.1039/C6AY02904C

Clairotte, M., Grinand, C., Kouakoua, E., Thébault, A., Saby,

N. P. A., Bernoux, M., & Barthès, B. G. (2016). National

calibration of soil organic carbon concentration using diffuse

infrared reflectance spectroscopy. Geoderma, 276, 41–52. https://doi.

org/10.1016/j.geoderma.2016.04.021

Coûteaux, M. M., Berg, B., & Rovira, P. (2003). Near-infrared

reflectance spectroscopy for determination of organic matter frac-

tions including microbial biomass in coniferous forest soils.

Soil Biology and Biochemistry, 35, 1587–1600. https://doi.org/

10.1016/j.soilbio.2003.08.003

Culman, S. W., Freeman, M., & Snapp, S. S. (2012). Procedure for
the determination of permanganate oxidizable carbon., Hickory

https://orcid.org/0000-0003-2001-9238
https://orcid.org/0000-0003-2001-9238
https://orcid.org/0000-0003-0185-8650
https://orcid.org/0000-0003-0185-8650
https://orcid.org/0000-0003-3985-257X
https://orcid.org/0000-0003-3985-257X
https://orcid.org/0000-0001-6198-3774
https://orcid.org/0000-0001-6198-3774
https://doi.org/10.1016/j.geoderma.2016.11.010
https://doi.org/10.1016/j.geoderma.2015.08.009
https://doi.org/10.1016/j.geoderma.2014.09.014
https://doi.org/10.1016/S0039-9140\05099\05100026-0
https://doi.org/10.2136/sssaj1989.03615995005300030008x
https://doi.org/10.1071/SR13077
https://doi.org/10.1071/SR17221
https://doi.org/10.1255/jnirs.1232
https://doi.org/10.1021/ed079p1358
https://doi.org/10.2136/sssaj2016.07.0216
https://cran.r-project.org/web/packages/boot/boot.pdf
https://doi.org/10.1201/9780849390395
https://doi.org/10.2136/sssaj2001.652480x
https://doi.org/10.2136/sssaj2001.652480x
https://doi.org/10.1039/C6AY02904C
https://doi.org/10.1039/C6AY02904C
https://doi.org/10.1016/j.geoderma.2016.04.021
https://doi.org/10.1016/j.geoderma.2016.04.021
https://doi.org/10.1016/j.soilbio.2003.08.003
https://doi.org/10.1016/j.soilbio.2003.08.003


DEISS ET AL. 17

Corners, MI: Long Term Ecological Research Protocols, Kellogg

Biological Station.

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and
their application. Cambridge: Cambridge Univ. Press. https://

doi.org/10.1017/CBO9780511802843

Deiss, L., Demyan, M. S., & Culman, S. W. (2020). Grind-

ing and spectra replication often improves mid-DRIFTS pre-

dictions of soil properties. Soil Sci Soc Am J. 2019, 1–16.

https://doi.org/10.1002/saj2.20021

Demyan, M. S., Rasche, F., Schulz, E., Breulmann, M., Müller, T.,

& Cadisch, G. (2012). Use of specific peaks obtained by diffuse

reflectance Fourier transform mid-infrared spectroscopy to study

the composition of organic matter in a Haplic Chernozem.

European Journal of Soil Science, 63, 189–199. https://doi.org/

10.1111/j.1365-2389.2011.01420.x

Demyan, M. S., Rasche, F., Schütt, M., Smirnova, N., Schulz, E., &

Cadisch, G. (2013). Combining a coupled FTIR-EGA system and in

situ DRIFTS for studying soil organic matter in arable soils. Biogeo-
sciences, 10, 2897–2913. https://doi.org/10.5194/bg-10-2897-2013

Dreimanis, A. (1962). Quantitative gasometric determination of

calcite and dolomite by using Chittick apparatus. Journal of
Sedimentary Research, 32, 520–529. https://doi.org/10.1306/

74D70D08-2B21-11D7-8648000102C1865D

Fearn, T. (2008). The interaction between standard normal variate and

derivatives. NIR News, 19, 16–17. https://doi.org/10.1255/nirn.1098

Gholizadeh, A., Luboš, B., Saberioon, M., & Vašát, R. (2013). Visi-

ble, near-infrared, and mid-infrared spectroscopy applications for soil

assessment with emphasis on soil organic matter content and qual-

ity: State-of-the-art and key issues. Applied Spectroscopy, 67, 1349–

1362. https://doi.org/10.1366/13-07288

Giacometti, C., Demyan, M. S., Cavani, L., Marzadori, C., Ciavatta,

C., & Kandeler, E. (2013). Chemical and microbiological soil qual-

ity indicators and their potential to differentiate fertilization regimes

in temperate agroecosystems. Applied Soil Ecology, 64, 32–48.

https://doi.org/10.1016/j.apsoil.2012.10.002

Griffiths, P. R. (1972). “Trading rules” in infrared Fourier trans-

form spectroscopy. Analytical Chemistry, 44, 1909–1913.

https://doi.org/10.1021/ac60319a015

Griffiths, P. R., & Haseth, J. A. (1986). Fourier transform infrared
spectrometry., New York: John Wiley & Sons. https://doi.

org/10.1002/bbpc.19860901224

Hanssen, L. M. (1993). Parameters for an infrared diffuse reflectance

standard. Optical Engineering, 32, 877–879. https://doi.org/

10.1117/12.61216

Henaka Arachchi, M. P. N. K., Field, D. J., & McBratney, A.

B. (2016). Quantification of soil carbon from bulk soil samples

to predict the aggregate-carbon fractions within using near- and

mid-infrared spectroscopic techniques. Geoderma, 267, 207–214.

https://doi.org/10.1016/j.geoderma.2015.12.030

Hesse, M., Meier, H., & Zeeh, B. (2005). Spe ktroskopische Metho-

den in der Organischen Chemie. (In German.) Georg Thieme Verlag,

Stuttgart. https://doi.org/10.1002/pauz.19960250417

Hicks, W., Viscarra Rossel, R. A., & Tuomi, S. (2015). Developing

the Australian mid-infrared spectroscopic database using data from

the Australian Soil Resource Information System. Soil Research, 53,

922–931. https://doi.org/10.1071/SR15171

Hobley, E. U., Baldock, J., & Wilson, B. (2016). Environmental

and human influences on organic carbon fractions down the soil

profile. Agriculture, Ecosystems & Environment, 223, 152–166.

https://doi.org/10.1016/j.agee.2016.03.004

Hutengs, C., Ludwig, B., Eisele, A., & Vohland, M. (2018). Compar-

ison of portable and bench-top spectrometers for mid-infrared dif-

fuse reflectance measurements of soils. Sensors (Basel), 18, 993.

https://doi.org/10.3390/s18040993

Janik, L. J., Skemstad, J. O., Shepherd, K. D., & Spouncer, L. R. (2007).

The prediction of soil carbon fractions using mid-infrared-partial

least square analysis. Australian Journal of Soil Research, 45, 73–

81. https://doi.org/10.1071/SR06083

Janik, L. J., Soriano-Disla, J. M., Forrester, S. T., & McLaughlin,

M. J. (2016). Effects of soil composition and preparation on the

prediction of particle size distribution using mid-infrared spec-

troscopy and partial least-squares regression. Soil Research, 54, 889–

904. https://doi.org/10.1071/SR16011

Jia, X., Chen, S., Yang, Y., Zhou, L., Yu, W., & Shi, Z. (2017).

Organic carbon prediction in soil cores using VNIR and MIR

techniques in an alpine landscape. Scientific Reports, 7, 2144.

https://doi.org/10.1038/s41598-017-02061-z

Karatzoglou, A., Meyer, D., & Hornik, K. (2006). Support vec-

tor machines in R. Journal of Statistical Software, 15, 1–28.

https://doi.org/10.18637/jss.v015.i09

Kennard, R. W., & Stone, L. A. (1969). Computer aided design

of experiments. Technometrics, 11, 137–148. https://doi.org/

10.1080/00401706.1969.10490666

Kimber, J. A., & Kazarian, S. G. (2017). Spectroscopic imaging

of biomaterials and biological systems with FTIR microscopy

or with quantum cascade lasers. Analytical and Bioanalyti-
cal Chemistry, 409, 5813–5820. https://doi.org/10.1007/s00216-

017-0574-5

Knadel, M., Stenberg, B., Deng, F., Thomsen, A. G., & Greve,

M. H. (2013). Comparing predictive abilities of three visible-

near infrared spectrophotometers for soil organic carbon and clay

determination. Journal of Near Infrared Spectroscopy, 21, 67–80.

https://doi.org/10.1255/jnirs.1035

Knox, N. M., Grunwald, S., McDowell, M. L., Bruland, G. L.,

Myers, D. B., & Harris, W. G. (2015). Modelling soil car-

bon fractions with visible near-infrared (VNIR) and mid-infrared

(MIR) spectroscopy. Geoderma, 239–240, 229–239. https://doi.org/

10.1016/j.geoderma.2014.10.019

Le Guillou, F., Wetterlind, W., Viscarra Rossel, R. A., Hicks, W.,

Grundy, M., & Tuomi, S. (2015). How does grinding affect

the mid-infrared spectra of soil and their multivariate calibra-

tions to texture and organic carbon? Soil Research, 53, 913–921.

https://doi.org/10.1071/SR15019

Lenth, R. (2019). The Package ‘emmeans’: Reference manual. The Com-

prehensive R Archive Network, R Development Core Team, Vienna.

https://cran.r-project.org/web/packages/emmeans/emmeans.pdf

(accessed 25 Jan. 2019).

Ludwig, B., Sawallisch, A., Heinze, S., Joergensen, R. G., & Voh-

land, M. (2015). Usefulness of middle infrared spectroscopy

for an estimation of chemical and biological soil proper-

ties: Underlying principles and comparison of different soft-

ware packages. Soil Biology and Biochemistry, 86, 116–125.

https://doi.org/10.1016/j.soilbio.2015.03.015

Ludwig, B., Linsler, D., Höper, H., Schmidt, H., Piepho, H.

P., & Vohland, M. (2016). Pitfalls in the use of middle-

infrared spectroscopy: Representativeness and ranking criteria

https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1002/saj2.20021
https://doi.org/10.1111/j.1365-2389.2011.01420.x
https://doi.org/10.1111/j.1365-2389.2011.01420.x
https://doi.org/10.5194/bg-10-2897-2013
https://doi.org/10.1306/74D70D08-2B21-11D7-8648000102C1865D
https://doi.org/10.1306/74D70D08-2B21-11D7-8648000102C1865D
https://doi.org/10.1255/nirn.1098
https://doi.org/10.1366/13-07288
https://doi.org/10.1016/j.apsoil.2012.10.002
https://doi.org/10.1021/ac60319a015
https://doi.org/10.1002/bbpc.19860901224
https://doi.org/10.1002/bbpc.19860901224
https://doi.org/10.1117/12.61216
https://doi.org/10.1117/12.61216
https://doi.org/10.1016/j.geoderma.2015.12.030
https://doi.org/10.1002/pauz.19960250417
https://doi.org/10.1071/SR15171
https://doi.org/10.1016/j.agee.2016.03.004
https://doi.org/10.3390/s18040993
https://doi.org/10.1071/SR06083
https://doi.org/10.1071/SR16011
https://doi.org/10.1038/s41598-017-02061-z
https://doi.org/10.18637/jss.v015.i09
https://doi.org/10.1080/00401706.1969.10490666
https://doi.org/10.1080/00401706.1969.10490666
https://doi.org/10.1007/s00216-017-0574-5
https://doi.org/10.1007/s00216-017-0574-5
https://doi.org/10.1255/jnirs.1035
https://doi.org/10.1016/j.geoderma.2014.10.019
https://doi.org/10.1016/j.geoderma.2014.10.019
https://doi.org/10.1071/SR15019
https://cran.r-project.org/web/packages/emmeans/emmeans.pdf
https://doi.org/10.1016/j.soilbio.2015.03.015


18 DEISS ET AL.

for the estimation of soil properties. Geoderma, 268, 165–175.

https://doi.org/10.1016/j.geoderma.2016.01.010

Madhavan, D. B., Baldock, J. A., Read, Z. J., Murphy, S. C.,

Cunningham, S. C., Perring, M. P., … Baker, T. G. (2017).

Rapid prediction of particulate, humus and resistant fractions

of soil organic carbon in reforested lands using infrared spec-

troscopy. Journal of Environmental Management, 193, 290–299.

https://doi.org/10.1016/j.jenvman.2017.02.013

Madhavan, D. B., Kitching, M., Mendham, D. S., Weston, C. J., & Baker,

T. G. (2016). Mid-infrared spectroscopy for rapid assessment of soil

properties after land use change from pastures to Eucalyptus globu-

lus plantations. Journal of Environmental Management. 175, 67–75.

https://doi.org/10.1016/j.jenvman.2016.03.032

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivari-
ate analysis., New York: Academic press. https://doi.org/10.1002/

bimj.4710240520

Martens, H., & Naes, T. (1990). Multivariate calibration., Chichester:

John Wiley & Sons. https://doi.org/10.1002/cem.1180040607

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch,

F. (2015). e1071: Misc functions of the Department of Statis-

tics. R Foundation for Statistical Computing, Vienna. https://

CRAN.R-project.org/package=e1071 (accessed 21 June 2017).

Mirzaeitalarposhti, R., Demyan, M. S., Rasche, F., Poltorad-

nev, M., Cadisch, G., & Müller, T. (2015). MidDRIFTS-

PLSR-based quantification of physico-chemical soil proper-

ties across two agroecological zones in Southwest Germany:

Generic independent validation surpasses region specific cross-

validation. Nutrient Cycling in Agroecosystems, 102, 265–283.

https://doi.org/10.1007/s10705-015-9698-1

Mirzaeitalarposhti, R., Demyan, M. S., Rasche, F., Cadisch, G.,

& Müller, T. (2017). Mid-infrared spectroscopy to support

regional-scale digital soil mapping on selected croplands of

South-West Germany. CATENA, 149, 283–293. https://doi.

org/10.1016/j.catena.2016.10.001

Mouazen, A., Saeys, W., Xing, J., de Baerdemaeker, J., & Ramon, H.

(2005). Near-infrared spectroscopy for agricultural materials: An

instrument comparison. Journal of Near Infrared Spectroscopy, 13,

87–97. https://doi.org/10.1255/jnirs.461

Nguyen, T., Janik, L. J., & Raupach, M. (1991). Diffuse reflectance

infrared Fourier transform (DRIFT) spectroscopy in soil studies. Soil
Research, 29, 49–67. https://doi.org/10.1071/SR9910049

Nocita, M., Stevens, A., Van Wesemael, B., Aitkenhead, M., Bach-

mann, M., Barth, B., … Wetterlind, J. (2015). Soil spectroscopy :

An alternative to wet chemistry for soil monitoring. Advances
in Agronomy, 132, 139–159. https://doi.org/10.1016/bs.agron.

2015.02.002

Ohio Supercomputer Center. (1987). Ohio supercomputer center.

Columbus, OH: Ohio Supercomputer Center.

O’Rourke, S. M., Minasny, B., Holden, N. M., & McBratney, A.

B. (2016). Synergistic use of Vis NIR, MIR, and XRF spec-

troscopy for the determination of soil geochemistry. Soil Science
Society of America Journal, 80, 888–899. https://doi.org/10.2136/

sssaj2015.10.0361

Oksanen, J. (2019). The Package ‘vegan’: Reference manual. The

Comprehensive R Archive Network, R Development Core Team,

Vienna. https://cran.r-project.org/web/packages/vegan/vegan.pdf

(accessed 15 Jan. 2019).

Orlov, D. S. (1986). Humus acids of soil., Rotterdam: Balkema.

https://doi.org/10.1002/jpln.19871500116

Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N.

D., & Calderón, F. J. (2014). Soil chemical insights provided

through vibrational spectroscopy. Advances in Agronomy, 126, 1–

148. https://doi.org/10.1016/B978-0-12-800132-5.00001-8

Peng, X., Shi, T., Song, A., & Gao, W. (2014). Estimating soil

organic carbon contents from visible/near-infrared spectroscopy

using the combination of support vector machine regression and

successive projection algorithm. Remote Sensing, 6, 2699–2717.

https://doi.org/10.3390/rs6042699

R Core Team. (2016). R: A language and environment for statisti-

cal computing. R Foundation for Statistical Computing, Vienna.

https://www.R-project.org/ (accessed 21 June 2017).

Rabenarivo, M., Chapuis-Lardy, L., Brunet, D., Chotte, J. L.,

Rabeharisoa, L., & Barthès, B. G. (2013). Comparing near and

mid-infrared reflectance spectroscopy for determining properties

of Malagasy soils, using global or LOCAL calibration. Journal
of Near Infrared Spectroscopy, 21, 495–509. https://doi.org/

10.1255/jnirs.1080

Riedel, F., Denk, M., Müller, I., Barth, N., & Gläßer, C. (2018). Pre-

diction of soil parameters using the spectral range between 350

and 15,000 nm: A case study based on the Permanent Soil Mon-

itoring Program in Saxony, Germany. Geoderma, 315, 188–198.

https://doi.org/10.1016/j.geoderma.2017.11.027

Robin, V., Petit, S., Beaufort, D., & Prêt, D. (2013). Mapping kaolinite

and dickite in sandstone thin sections using infrared microspec-

troscopy. Clays and Clay Minerals, 61,141–151. https://doi.

org/10.1346/CCMN.2013.0610211

Russell, J. D. (1987). Infrared spectroscopy of inorganic compounds. In:

H. Willis (Ed.), Laboratory methods in infrared spectroscopy. New

York: John Wiley & Sons.

Schwartz, G., Eshel, G., & Ben-Dor, E. (2011). Reflectance spec-

troscopy as a tool for monitoring contaminated soils. In: S. Pas-

cucci (Ed.), Soil contamination., New York: InTech. p. 67–90.

https://doi.org/10.5772/23661

Sila, A. M., Shepherd, K. D., & Pokhariyal, G. P. (2016). Evaluating the

utility of mid-infrared spectral subspaces for predicting soil proper-

ties. Chemometrics and Intelligent Laboratory Systems, 153, 92–105.

https://doi.org/10.1016/j.chemolab.2016.02.013

Smith, B. C. (2011). Fundamentals of Fourier transform infrared
spectroscopy., Boca Raton: CRC Press. https://doi.org/10.

1201/b10777

Soda, R. (1961). Infrared absorption spectra of quartz and some other

silica modification. Bulletin of the Chemical Society of Japan, 34,

1491–1495. https://doi.org/10.1246/bcsj.34.1491

Soil Survey Staff. (2014). Kellogg soil survey laboratory methods man-

ual. Soil Survey Investigations Report No. 42, Version 5.0. USDA,

Natural Resources Conservation Service, Washington, DC.

Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., Mac-

Donald, L. M., & McLaughlin, M. J. (2014). The performance

of visible, near-, and mid-infrared reflectance spectroscopy for

prediction of soil physical, chemical, and biological proper-

ties. Applied Spectroscopy Reviews, 49, 139–186. https://doi.org/

10.1080/05704928.2013.811081

Spaccini, R., & Piccolo, A. (2007). Molecular characterization of com-

post at increasing stages of maturity. 1. Chemical fractionation and

infrared spectroscopy. Journal of Agricultural and Food Chemistry,

55, 2293–2302. https://doi.org/10.1021/jf0625398

Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetter-

lind, J. (2010). Visible and near-infrared spectroscopy in soil

https://doi.org/10.1016/j.geoderma.2016.01.010
https://doi.org/10.1016/j.jenvman.2017.02.013
https://doi.org/10.1016/j.jenvman.2016.03.032
https://doi.org/10.1002/bimj.4710240520
https://doi.org/10.1002/bimj.4710240520
https://doi.org/10.1002/cem.1180040607
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
https://doi.org/10.1007/s10705-015-9698-1
https://doi.org/10.1016/j.catena.2016.10.001
https://doi.org/10.1016/j.catena.2016.10.001
https://doi.org/10.1255/jnirs.461
https://doi.org/10.1071/SR9910049
https://doi.org/10.1016/bs.agron.2015.02.002
https://doi.org/10.1016/bs.agron.2015.02.002
https://doi.org/10.2136/sssaj2015.10.0361
https://doi.org/10.2136/sssaj2015.10.0361
https://cran.r-project.org/web/packages/vegan/vegan.pdf
https://doi.org/10.1002/jpln.19871500116
https://doi.org/10.1016/B978-0-12-800132-5.00001-8
https://doi.org/10.3390/rs6042699
https://www.R-project.org/
https://doi.org/10.1255/jnirs.1080
https://doi.org/10.1255/jnirs.1080
https://doi.org/10.1016/j.geoderma.2017.11.027
https://doi.org/10.1346/CCMN.2013.0610211
https://doi.org/10.1346/CCMN.2013.0610211
https://doi.org/10.5772/23661
https://doi.org/10.1016/j.chemolab.2016.02.013
https://doi.org/10.1201/b10777
https://doi.org/10.1201/b10777
https://doi.org/10.1246/bcsj.34.1491
https://doi.org/10.1080/05704928.2013.811081
https://doi.org/10.1080/05704928.2013.811081
https://doi.org/10.1021/jf0625398


DEISS ET AL. 19

science. Advances in Agronomy, 107, 163–215. https://doi.org/

10.1016/S0065-2113(10)07005-7

Sterratt, D. C. (2019). The Package ‘geometry’: Reference man-

ual. The Comprehensive R Archive Network. R Devel-

opment Core Team, Vienna. https://cran.r-project.org/

web/packages/geometry/geometry.pdf (accessed 1 April 2019).

Stevens, A., & Ramirez-Lopez, L. (2015). An introduction to the

prospectr package. GitHub, Inc., San Francisco, CA. http://anto

inestevens.github.io/prospectr/ (accessed 21 June 2017).

Stumpe, B., Weihermüller, L., & Marschner, B. (2011). Sample prepa-

ration and selection for qualitative and quantitative analyses of

soil organic carbon with mid-infrared reflectance spectroscopy.

European Journal of Soil Science, 62, 849–862. https://doi.org/

10.1111/j.1365-2389.2011.01401.x

Takoutsing, B., Weber, J. C., Tchoundjeu, Z., & Shepherd, K. (2016).

Soil chemical properties dynamics as affected by land use change in

the humid forest zone of Cameroon. Agroforestry Systems, 90, 1089–

1102. https://doi.org/10.1007/s10457-015-9885-8

Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G.,

& Gerzabek, M. (2007). An alternative method to measure carbonate

in soils by FT-IR spectroscopy. Environmental Chemistry Letters, 5,

9–12. https://doi.org/10.1007/s10311-006-0079-5

Terhoeven-Urselmans, T., Vagen, T.-G., Spaargaren, O., & Shep-

herd, K. D. (2010). Prediction of soil fertility properties from

a globally distributed soil mid-infrared spectral library. Soil Sci-
ence Society of America Journal, 74, 1792-1799. https://doi.org/

10.2136/sssaj2009.0218

Towett, E. K., Shepherd, K. D., Sila, A., Aynekulu, E., & Cadisch,

G. (2015). Mid-infrared and total x-ray fluorescence spectroscopy

complementarity for assessment of soil properties. Soil Sci-
ence Society of America Journal, 79, 1375–1385. https://doi.org/

10.2136/sssaj2014.11.0458

Varmuza, K., & Filzmoser, P. (2009). Introduction to multivariate
statistical analysis in chemometrics., Boca Raton: CRC Press.

https://doi.org/10.1201/9781420059496

Veum, K. S., Goyne, K. W., Kremer, R. J., Miles, R. J., & Sud-

duth, K. A. (2014). Biological indicators of soil quality and soil

organic matter characteristics in an agricultural management contin-

uum. Biogeochemistry, 117, 81–99. https://doi.org/10.1007/s10533-

013-9868-7

Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose,

T., … Young, I. M. (2016). Modeling soil processes: Review, key

challenges, and new perspectives. Vadose Zone Journal, 15, 1–57.

https://doi.org/10.2136/vzj2015.09.0131

Vohland, M., Ludwig, M., Thiele-Bruhn, S., & Ludwig, B. (2014).

Determination of soil properties with visible to near- and mid-

infrared spectroscopy: Effects of spectral variable selection.

Geoderma, 223–225, 88–96. https://doi.org/10.1016/j.geoderma.

2014.01.013

Wang, X., Sanderman, J., & Yoo, K. (2018). Climate-dependent

topographic effects on pyrogenic soil carbon in southeastern

Australia. Geoderma, 322, 121–130. https://doi.org/10.1016/

j.geoderma.2018.02.025

Wehrens, R. (2011). Chemometrics with R: Multivariate data anal-
ysis in the natural sciences and life sciences., Berlin: Springer.

https://doi.org/10.1007/978-3-642-17841-2

Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B., & Samson-

Liebig, S. E. (2003). Estimating active carbon for soil qual-

ity assessment: A simplified method for laboratory and field

use. American Journal of Alternative Agriculture, 18, 3–17.

https://doi.org/10.1079/AJAA2003003

Wilson, B. R., King, D., Growns, I., & Veeragathipillai, M. (2017). Cli-

matically driven change in soil carbon across a basalt landscape is

restricted to non-agricultural land use systems. Soil Research, 55,

376–388. https://doi.org/10.1071/SR16205

Winowiecki, L., Vågen, T. G., & Huising, J. (2016). Effects

of land cover on ecosystem services in Tanzania: A spatial

assessment of soil organic carbon. Geoderma, 263, 274–283.

https://doi.org/10.1016/j.geoderma.2015.03.010

Workman, J. J. (2016). Concise handbook of analytical spectroscopy:
Theory, applications, and reference materials., Singapore: World

Scientific. https://doi.org/10.1142/8800-vol3

Yang, H., Kuang, B., & Mouazen, A. M. (2012). Quantitative anal-

ysis of soil nitrogen and carbon at a farm scale using vis-

ible and near infrared spectroscopy coupled with wavelength

reduction. European Journal of Soil Science, 63, 410–420.

https://doi.org/10.1111/j.1365-2389.2012.01443.x

Zhang, L., Yang, X., Drury, C., Chantigny, M., Gregorich, E., Miller,

J. … Yang, J. (2018). Infrared spectroscopy prediction of organic

carbon and total nitrogen in soil and particulate organic matter from

diverse Canadian agricultural regions. Canadian Journal of Soil Sci-
ence, 90, 1–23. https://doi.org/10.1139/cjss-2017-0070

SUPPORTING INFORMATION
Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Deiss L, Margenot AJ,

Culman SW, Demyan MS. Optimizing acquisition

parameters in diffuse reflectance infrared Fourier

transform spectroscopy of soils. Soil Sci Soc Am J.
2020;1–19. https://doi.org/10.1002/saj2.20028

https://doi.org/10.1016/S0065-2113\05010\05107005-7
https://doi.org/10.1016/S0065-2113\05010\05107005-7
https://cran.r-project.org/web/packages/geometry/geometry.pdf
https://cran.r-project.org/web/packages/geometry/geometry.pdf
http://antoinestevens.github.io/prospectr/
http://antoinestevens.github.io/prospectr/
https://doi.org/10.1111/j.1365-2389.2011.01401.x
https://doi.org/10.1111/j.1365-2389.2011.01401.x
https://doi.org/10.1007/s10457-015-9885-8
https://doi.org/10.1007/s10311-006-0079-5
https://doi.org/10.2136/sssaj2009.0218
https://doi.org/10.2136/sssaj2009.0218
https://doi.org/10.2136/sssaj2014.11.0458
https://doi.org/10.2136/sssaj2014.11.0458
https://doi.org/10.1201/9781420059496
https://doi.org/10.1007/s10533-013-9868-7
https://doi.org/10.1007/s10533-013-9868-7
https://doi.org/10.2136/vzj2015.09.0131
https://doi.org/10.1016/j.geoderma.2014.01.013
https://doi.org/10.1016/j.geoderma.2014.01.013
https://doi.org/10.1016/j.geoderma.2018.02.025
https://doi.org/10.1016/j.geoderma.2018.02.025
https://doi.org/10.1007/978-3-642-17841-2
https://doi.org/10.1079/AJAA2003003
https://doi.org/10.1071/SR16205
https://doi.org/10.1016/j.geoderma.2015.03.010
https://doi.org/10.1142/8800-vol3
https://doi.org/10.1111/j.1365-2389.2012.01443.x
https://doi.org/10.1139/cjss-2017-0070
https://doi.org/10.1002/saj2.20028

