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Abstract
There is an increased interest in using diffuse reflectance infrared Fourier transform

spectroscopy in the mid-infrared region (mid-DRIFTS) for high-throughput predic-

tion of soil properties, but basic methodological factors toward this end have yet

to be thoroughly vetted. This study aimed to determine how the combined effects

of soil grinding (sieved to <2.0 mm and finely ground to <0.5 mm) and sample

replication (single or multiple soil subsamples, using one-to-four replicates) affect

the spectral quality and predictive performance (accuracy) of automated plate-based

mid-DRIFTS for soil analysis. We evaluated chemometric prediction performance

of soil physical, chemical, and biological variables (clay, sand, pH, total organic C,

and permanganate-oxidizable C [POXC]) in 397 soils from the U.S. Midwest. Sieved

soils (<2.0 mm) increased the overall spectral variability compared to finely ground

soils (<0.5 mm) and led to a distinct wavenumber importance allocation in support

vector machine models. These spectral changes degraded prediction performance

of <2.0 mm samples when compared to <0.5 mm samples. The number of spectral

replicates had a smaller effect on spectral properties, but impacted prediction accu-

racies of soil properties. In general, prediction outcomes improved with four spectral

replicates either within a single soil subsample or across different soil subsamples.

Our data collectively suggest that soil particle-size reduction to <0.5 mm and

collecting multiple spectra improve mid-DRIFTS predictions. Recommendations

to optimize high-throughput mid-DRIFTS should consider the tradeoffs between

prediction accuracy and the effort needed to prepare soil samples and acquire spectra.

1 INTRODUCTION

Methodological decisions in diffuse reflectance infrared

Fourier transform spectroscopy in the mid-infrared region

(mid-DRIFTS) can introduce error, compromising its analytic

and predictive applications in soil sciences (Gholizadeh,

Abbreviations: mid-DRIFTS, diffuse reflectance infrared Fourier

transform spectroscopy in the mid-infrared region; POXC,

permanganate-oxidizable carbon; TOC, total organic carbon.
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Luboš, Saberioon, & Vašát, 2013; Soriano-Disla, Janik,

Viscarra Rossel, MacDonald, & McLaughlin, 2014). Error

can originate from sample preparation (e.g., grinding and

drying), instrument set-up and parameterization (e.g., sample

replication, resolution, and number of co-added scans),

and/or data processing (chemometrics). Yet in many cases,

commonly employed experimental settings for mid-DRIFTS

of soils have been used without systematic evaluation and

optimization. These experimental parameters can affect the

spectral quality and consequently the prediction performance
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of mid-DRIFTS. Spectral quality (defined here as the ability

to represent molecular bond’s vibrational information from a

sample when stimulated by infrared electromagnetic energy)

is actually one of the most restrictive factors in infrared spec-

troscopy of soils (Coûteaux, Berg, & Rovira, 2003). Objective

evaluations of these parameters are necessary to understand

how they impact spectral properties and prediction perfor-

mance, ultimately providing guidelines for best practices.

Even though soil grinding has a solid theoretical base

on how it can affect the spectral quality in mid-DRIFTS,

previously reported effects on prediction performance have

been inconsistent (Table 1). Some studies have achieved

better prediction performances for soil total organic carbon

(TOC) with smaller (finely ground) particle size distributions

(Barthès et al., 2016; Le Guillou et al., 2015), but the response

can vary by soil texture (Baldock, Hawke, Sanderman, &

MacDonald, 2013). Stumpe, Weihermüller, and Marschner

(2011) showed that finely grinding soils for 2 min in a mill

when compared to <2.0 mm samples improved mid-DRIFTS

predictions for either soil TOC or pH; however, an additional

time in the mill (total of 4 min) decreased the prediction

performance for both soil variables (Stumpe et al., 2011).

Evaluating soil texture, Janik, Soriano-Disla, Forrester, and

McLaughlin (2016) found a positive effect of grinding when

predicting soil clay and silt, but obtained a negative effect

for sand. Le Guillou et al. (2015) obtained more accurate

predictions with soil grinding for clay and sand, but found

no differences for silt. In general, TOC and clay prediction

accuracies improved with grinding while coarser particle

sizes had a less consistent response.

Finely grinding soil samples (<0.25 mm) is a common rec-

ommendation due to the 1–2 mm diameter beam size in mid-

IR spectrometers (Reeves & Smith, 2009), which is smaller

than larger soil particles (e.g., coarse sand and aggregates).

Positive effects of grinding include prevention of specular

reflections from large particles in the soil sample (e.g., large

quartz particles) (Le Guillou et al., 2015) and reduction of

both light scattering and presence of spectral artifacts, thereby

improving spectral quality (Kimber & Kazarian, 2017). As a

result, spectra from finely ground soils generally have lower

spectral variability among soil analytical replicates and lower

multivariate scores dispersions across different soil samples

(Baldock et al., 2013; Le Guillou et al., 2015; Stumpe et al.,

2011). The intense peaks produced from specular reflections

can completely mask specific peaks in the diffuse reflectance

spectra of soil (Nguyen, Janik, & Raupach, 1991). On the

other hand, excessive grinding could destroy chemical bonds

of soil organic or mineral constituents (Stumpe et al., 2011),

change soil particle size distribution (Stenberg, Jonsson, &

Börjesson, 2000), and increase overall spectral reflectance

(Stenberg, Viscarra-Rossel, Mouazen, & Wetterlind, 2010);

all of which can result in less specific light reflections in the

spectra. Finally, besides these contrasting positive and neg-

Core Ideas
• There is no consensus for soil grinding and sample

replication in mid-DRIFTS.

• Soil grinding to <0.5 mm compared to <2.0 mm

decreased spectral variability.

• Finely grinding soils (<0.5 mm) with four repli-

cates improved prediction performance.

• Spectra replicated in the same or different subsam-

ples had similar spectral properties.

• High-throughput mid-DRIFTS yields robust pre-

dictions of soil properties.

ative effects, Le Guillou et al. (2015) concluded that recom-

mendations on how much grinding is needed for mid-DRIFTS

should also consider the time and effort needed to prepare the

soil samples as well as the purpose of the analysis. Reeves

(2010) stated that while spectral distortions do occur as a

function of non-optimal experimental conditions (e.g., spec-

ular reflections), multivariate models that are used to predict

properties could at least partially help ameliorate the problem.

The effect of replicating spectra within a soil sample or

analyzing multiple soil subsamples (i.e., analytic replicates)

on the spectral quality and prediction performance in mid-

DRIFTS is less understood relative to the effect of soil grind-

ing. There is a lack of studies that have explicitly evaluated

these effects in the mid-infrared region. Spectra replication in

a single soil subsample has been facilitated by new models of

bench-top DRIFTS equipped with autosamplers that enable

spectral readings in multiple places within a single sample

cup or well. The replication method Within a well is done

by moving the beam (or the plate) in a random fashion,

reducing the number of wells (different soil subsamples)

needed to obtain a representative spectrum. Many studies

have used analytical replicates as a way to counteract spectral

variability, increase sample representativeness, and account

for differences in particle size and packing density (e.g.,

Mirzaeitalarposhti, Scott, Rasche, Cadisch, & Müller, 2017;

Riedel, Denk, Müller, Barth, & Gläßer, 2018; Terhoeven-

Urselmans, Vagen, Spaargaren, & Shepherd, 2010; Zhang

et al., 2018), but most studies have not explicitly shown how

replicating spectra affect spectral characteristics and predic-

tion performance. In one study that evaluated the number of

replicates in mid-DRIFTS, Peng et al. (2014) showed that

cross-validated prediction errors for TOC and clay decreased

markedly (by about 20%) from one to three analytical repli-

cates (different soil subsamples); and the improvement was

minor thereafter up to 10 replicates. Given the soil intrinsic

bio-physical-chemical heterogeneity, one might expect that
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T A B L E 1 Studies reporting the effect of soil grinding on diffuse reflectance infrared Fourier transform spectroscopy model prediction

performance in the mid-infrared region (mid-DRIFTS)

Reference Variable Grinding RMSEc R2c Samples (n)
(range)a (<mm) Cal. or CV Val.

Stumpe et al., 2011 pH (3.5–7.6) 2 0.28 0.86 180 –

(+2 min)
b

0.22 0.96 180 –

(+4 min)
b

0.24 0.92 180 –

Organic C 2 0.09
d

0.68 180 –

(0.5–4.5%) (+2 min)
b

0.05
d

0.94 180 –

(+4 min)
b

0.07
d

0.91 180 –

Le Guillou et al., 2015 Organic C 2 0.96 0.66 227 –

(0.03–20.1%) 1 0.88 0.72 227 –

0.5 0.86 0.73 227 –

0.25 0.82 0.75 227 –

0.106 0.8 0.77 227 –

Clay (0–860 g kg–1) 2 102 0.75 227 –

1 98 0.77 227 –

0.5 101 0.75 227 –

0.25 95 0.78 227 –

0.106 86 0.82 227 –

Silt (0–620 g kg–1) 2 63 0.66 227 –

1 61 0.65 227 –

0.5 63 0.69 227 –

0.25 66 0.68 227 –

0.106 65 0.68 227 –

Sand (22–1000 g kg–1) 2 123 0.78 227 –

1 117 0.8 227 –

0.5 110 0.82 227 –

0.25 103 0.84 227 –

0.106 92 0.88 227 –

Barthès et al., 2016 Organic C 2 – 0.84 97 –

(0.2–12.1%) 0.2 – 0.95 97 –

Janik et al., 2016 Clay (10–890 g kg–1) 2 90 0.8 1313 664

Clay (0–830 g kg–1) 0.1 70 0.88 792 406

Silt (30–980 g kg–1) 2 120 0.78 1313 664

Silt (10–510 g kg–1) 0.1 50 0.59 797 330

Sand (0–670 g kg–1) 2 70 0.63 1313 664

Sand (50–980 g kg–1) 0.1 90 0.84 793 408

aStumpe et al. (2011) measured soil pH in a 1:2.5 soil to 0.01 m CaCl2 solution ratio (m/v), and soil organic carbon was determined by the dry combustion method. Le

Guillou et al. (2015) used samples from a database where soil organic carbon and soil texture were measured by various methods (Viscarra-Rossel & Webster, 2012).

Barthès et al. (2016) measured soil organic carbon by the dry combustion method. Janik et al. (2016) determined soil texture using the pipette method.
b

<2 mm samples plus the given grinding time in minutes in a mill.
cThe coefficient of determination (R2) and root mean squared error (RMSE) were extracted from independent validation datasets or cross-validation when validation sets

were not available.
dLog-transformed data.

replicating spectra in the same soil subsample would produce

less variable spectra than different subsamples.

We hypothesize that with coarsely sieved soils, more

spectral variability can be expected due to the additive effects

of particle size heterogeneity and intrinsic variability among

different soil subsamples. With finely ground soils, more

variability would be expected due to the intrinsic variability

among different subsamples than to the soil particle size

heterogeneity. However, the interactive effect of grinding

and methods to replicate spectra has yet to be explored.
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It remains unclear if soil grinding and spectra replication

improve prediction performances in mid-DRIFTS.

The objective of this study was to determine suitable

experimental parameters to optimize predictive applications

of automated plate-based high-throughput mid-DRIFTS for

soils. Specifically, we aim to determine how the combined

effects of soil grinding (soils crushed to pass <2 mm or

crushed and then finely ground to <0.5 mm) and spectral

replication (one-to-four spectra replicates Within a subsample

or Across different subsamples) affect the spectral variability

and prediction accuracy of mid-DRIFTS for soil analysis. We

evaluated the prediction performance of five soil variables

(clay, sand, pH, TOC, and permanganate-oxidizable C)

covering a diversity of soils from Ohio, USA.

2 MATERIALS AND METHODS

2.1 Soils and study area

We selected 397 legacy soil samples from the National

Cooperative Soil Survey (NCSS, https://www.nrcs.usda.gov/

wps/portal/nrcs/main/soils/survey/) distributed over four dif-

ferent physiographic regions of the U.S. Midwest: Glaciated

Allegheny Plateau (AP), Unglaciated Allegheny Plateau

(GP), Till Plains (TP), and Huron-Erie Lake Plains (LP).

These physiographic regions (ODGS, 1998) corresponded to

the following Major Land Resource Areas (MLRA) (USDA-

NRCS, 2006; MLRA names are given in italics with the

corresponding MLRA number in parentheses): AP, Western
(124) and Central (126) Allegheny Plateau; GP, Lake Erie
Glaciated Plateau (139); TP, Indian and Ohio Till Plain, Cen-
tral (111A), Northeastern (111B), Western (111D), and East-
ern (111E) Parts; and LP, Erie and Huron Lake Plain (99).

For each region, soil samples were systematically selected

to cover a broad range of soil variables values (Table 2). Soils

were originally sampled from different genetic horizons over

the period from 1950–2012 as part of the NCSS in Ohio. Soil

samples were analyzed and archived at The Ohio State Uni-

versity in collaboration with the NCSS. Legacy data was dig-

itally available at https://ncsslabdatamart.sc.egov.usda.gov/.

Samples were assigned to a physiographic region based on

their county location, and samples from counties containing

two or more physiographic regions were not included. Addi-

tionally, only samples were considered after 1966, as prior to

this year wet combustion was used to determine TOC.

2.2 Soil analysis

Soil texture, pH, and TOC were part of the legacy data

while permanganate oxidizable carbon (POXC) was deter-

mined specifically for this study. These soil properties

are soil health indicators that enable evaluating how well

soil is performing its ecological functions (https://www.

nrcs.usda.gov/wps/portal/nrcs/main/soils/health/). Labora-

tory soil analysis of the legacy data followed the methods

described in the Soil Survey Laboratory Information Manual

(Burt, 2011; SSIR no. 42, Soil Survey Staff, 2014). Briefly,

soil particle-size distribution (soil texture) was determined

using the pipet method (method 3A1), and the variables

used in this study were total sand (<2.0 mm and >0.05 mm)

and total clay (<0.002 mm). Soil pH was measured in a

1:1 soil/water mixture (v/v) (method 4C1a2a), and total C

(TC) was measured by dry combustion (method 6A2a). Total

carbon was measured in a Lindberg tube furnace heated to

900 ◦C, with evolved CO2 being swept by an oxygen carrier

gas to an Ascarite filled Nesbitt absorption bulb. Weight

change of the absorption bulb was recorded with a microbal-

ance and converted to TC. In soils without carbonates, TC

was taken as TOC, while in soils with carbonates, inor-

ganic carbon was determined separately by the gasometric

method (Dreimanis, 1962) and inorganic carbon content

subtracted from TC to yield TOC. Permanganate oxidizable

carbon measurements were based on the methods of Weil,

Islam, Stine, Gruver, and Samson-Liebig (2003) adapted

by Culman, Freeman, and Snapp (2012). In brief, 20 ml of

0.02 mol L–1 KMnO4 was added to 50-ml tubes containing

2.5 g air-dried soil. The tubes were shaken for 2 min at 240

oscillations min–1 then allowed to settle for 10 min. After

settling, 0.5 ml of the supernatant was diluted with 49.5 ml

of deionized water and sample absorbance was quantified at

550 nm on a spectrophotometer.

2.3 Sample preparation for DRIFTS

A diagram of the procedures used to prepare the samples,

setup the instrument, and data processing (chemometrics) is

presented in Figure 1. The samples from the soil survey were

originally stored as air-dried, crushed, and sieved to <2.0 mm.

Before acquiring spectra for each grinding size, soils were

dried for > 48 h at 40 ◦C and at 12–14% relative humidity.

After acquiring the spectra for the <2.0 mm samples (spec-

tra acquisition process is described below), the same soil sub-

samples were ground to a <0.5 mm size by placing into 20-ml

cylindrical glass vials with three stainless steel bars (0.63 cm

diameter and 3.81 cm length), and loaded onto a roller grinder.

The vials were rolled for 16 h at 60 rpm and the stainless steel

bars reduced sample sizes by crushing soil between falling

bars as the vials rotated. We determined how effective this

grinding method was at reducing soils to <0.5 mm in a pre-

test. Ten soils were selected to represent a wide range of soil

textures (clay: 140–437 g kg–1; silt: 39–531 g kg–1; sand: 32–

782 g kg–1). These samples were ground as described above,

weighed, passed through a 0.5 mm sieve and the fraction

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://ncsslabdatamart.sc.egov.usda.gov/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/
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T A B L E 2 Summary statistics of measured soil variables covering four physiographic regions of the U.S. Midwest

Clay Sand pH TOCa POXCa Depth, upper Depth, lower
g kg–1 g kg–1 % mg kg–1 cm

Unglaciated Allegheny Plateau (A)

Min. 30 1 2.3 0.10 14 0 1.3

Median 238 131 4.9 0.34 134 26.0 38.1

Mean 268 228 5.2 0.94 247 41.2 55.6

Max. 851 930 7.9 7.2 1330 312.4 355.6

n 100 100 100 100 97 97 97

Glaciated Allegheny Plateau (GA)

Min. 57 5 4.2 0.20 3 0 3

Median 204 253 5.4 0.40 136 29.0 38.6

Mean 219 281 5.6 0.76 229 47.3 62.1

Max. 648 853 7.6 6.0 1233 203.2 228.6

n 100 100 100 100 100 100 100

Huron-Erie Lake Plains (LP)

Min. 11 11 4.2 0.13 45 0 5.1

Median 368 191 6.9 0.60 196 35.6 50.8

Mean 335 306 6.7 1.12 371 41.1 57.6

Max. 710 980 7.9 9.1 1412 134.6 147.3

n 99 99 99 99 98 98 98

Till Plains (T)

Min. 74 8 3.2 0.20 37 0 3

Median 318 165 6.1 0.6 181 30.5 45.7

Mean 308 230 6.1 0.9 311 40.3 55.4

Max. 645 820 8 4.3 1377 165.1 180.3

n 98 98 98 98 97 97 97

aTOC, total organic carbon; POXC, permanganate oxidizable carbon.

that passed through the sieve was weighed again. Averaged

across all soils, grinding effectively reduced 95.8% of the

soil to <0.5 mm. Most remaining particles that did not pass

thought the <0.5 mm sieve were small rocks. These remaining

particles did not present risk of increasing particle heterogene-

ity once they were taken out by a trained technician if detected

in the sample cup’s top surface. The two grinding sizes used

in our study were primarily defined based on the results found

by Le Guillou et al. (2015) that did find significant increases

in model predictions errors with decreased particle size going

from <2.0 mm to <0.25 mm, but there was no difference

going from <1.0 mm to <0.25 mm (including <0.5 mm).

2.4 DRIFTS instrument set-up

Absorbance spectra (log R–1, where R is reflectance) were

obtained using an X,Y Autosampler (Pike Technologies Inc.,

Madison, WI) coupled with a Nicolet iS50 spectrometer

equipped with a diffuse reflectance accessory (Thermo

Fisher Scientific Inc., Waltham, MA). The autosampler

enables plate-based measurements of multiple samples

across wells, but it also enables reading multiple locations

within each single well, locations which can be specifically

configured in AutoPro software (Pike Technologies Inc.,

Madison, WI). We used anodized aluminum plates that fit

24 polystyrene sample cups. We used oven dried (>16 h

at 100 ◦C) potassium bromide as a background (KBr), and

background measurements were done at the beginning of

each plate. All measurements were conducted from 4000

to 400 cm–1, 4 cm–1 wavenumber resolution and with 24

co-added scans. We further reduced the spectral data to 4000

to 700 cm–1 to conduct spectral analysis and predictions.

The polystyrene sample cups (also referred to plate wells)

had an internal volume of 5.5 ml and a top circular opening

area of 10 mm diameter. The sample cups were loaded

with soil subsamples by over-filling the cups with soil, then

tapping the cup side gently three times to settle the soil into

the cup, and finally excess soil on the top was evenly scrapped

off using the narrow edge of a stainless steel spatula. The

soil was not packed or compressed into the well other than

by tapping and scrapping.
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F I G U R E 1 Diagram of the procedures used to pretreat soil samples with grinding, set-up for different methods of spectra replication, and

process the spectral data (chemometrics) in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS).

Instrument settings: wavenumber window 4000–700 cm−1, resolution 4 cm−1, and 24 co-added scans

To evaluate the two methods of sample replication, namely

Across or Within soil subsamples, the following approaches

were used (Figure 1). (I) In the replication Across wells, one

spectral reading per well was done in four different wells

(four sample cups loaded with different subsamples of the

same soil). The spectral readings were done in the central

position of each well. (II) In the replication Within a well,

four spectral readings were done in a randomly selected

subsample (one sample cup) from the four wells described

in the first step. The four readings Within a well were done

using the random oversampling motion function of the X,Y

Autosampler (within a 3 mm diameter of the sample cup’s

centroid to avoid edge effects). Each spectrum consisted of 24

co-added scans. These measurements were done for all 397

soils. Afterward, to evaluate the effect of number of analytical

replicates; one-to-four replicates of both replication methods

(Across and Within), were randomly selected and averaged.

2.5 Spectral quality assessment

Absorbance spectra were characterized by principal compo-

nents analysis (PCA) using mean-centered spectra. We used

the iterative NIPALS algorithm (Martens & Naes, 1989)

to derive the PCA (R package ‘chemometrics’; Varmuza

& Filzmoser, 2009). We plotted the first two principal

components scores and loadings to evaluate the effects of

treatments on the absorbance data variability (PCA scores

dispersion) and wavenumber-specific loadings distribution.

To compare the PCA scores dispersion, we first eval-

uated the spectra for homogeneity using Levene’s test for

homogeneity of variances, and then used a permutational mul-

tivariate analysis to test for the mentioned sources of variance

(R package ‘Vegan’; Oksanen, 2018). The first two principal

components scores from PCA-NIPALS were evaluated for

the spectral dissimilarity (homogeneity of multivariate scores

dispersion) using the Mahalanobis distances. Mahalanobis

distances are Euclidean distances of a spectral matrix where

wavenumbers are mean-centered, have unit variance, and are

uncorrelated (Mardia, Kent, & Bibby, 1979; Oksanen, 2018).

The permutational multivariate analysis of variance was used

to test for the partitioning of the Euclidean distance matrices

among the sources of variation (Oksanen, 2018).

Variability in the spectra was assessed by computing the

wavenumber-specific standard deviations of absorbances (Le

Guillou et al., 2015) in the analytical replicates from each

sample, and then calculating average standard deviation spec-

tra for each treatment (R package ‘stats’; R Core Team, 2016).

To determine the wavenumber importance in the support

vector machine (SVM) models, a recursive feature elimina-

tion algorithm was used (R package ‘caret’; Kuhn, 2018).

This approach implements backward selection of predictors

(wavenumbers) based on predictor importance ranking from

the first to the least important wavenumbers. This analysis
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considered all wavenumbers across the targeted mid-infrared

spectrum (4000 to 700 cm–1). The recursive feature elimi-

nation was processed using a 10-fold cross-validation with

a 75% training set to 25% leave-group out cross-validation.

The same spectral pretreatment method selected to develop

the prediction model of each variable (described below) was

used to determine the wavenumber importance.

2.6 Prediction model calibration and
independent validation

Several spectral treatments were applied to test which mathe-

matical treatment had greater ability to enhance spectral fea-

tures from spectra, and increase model robustness, accuracy,

repeatability, and reproducibility (Stevens & Ramirez-Lopez,

2015). Treatments tested were Savitzky–Golay smoothing

and derivative, GapSegment derivative, continuum-removal,

Detrend normalization, standard normal variate (SNV), block

scaling, sum of squares block weighting, standard normal

variate transformation (Fearn, 2008), and Detrend normal-

ization after filtering (Savitzky–Golay and Gap-Segment) (R

package ‘prospectr’; Stevens & Ramirez-Lopez, 2015).

Calibration models were developed on a representative

portion of samples (75% of the dataset) selected using the

Kennard–Stone sampling algorithm (Kennard & Stone,

1969) to explain ≥95% of the total variance and validated

on the remaining samples (25% of the dataset) (R package

‘prospectr; Stevens & Ramirez-Lopez, 2015). This selection

process was done for each one of the four physiographic

locations. Prior to modeling, outliers were verified in the

absorbance spectra considering orthogonal distance and

score distance. Orthogonal distance was between the true

position of each data point and its projection in space of the

first few principal components to explain ≥80% of the total

variance. Score distance was the projection of a sample to

the center of all sample projections (Wehrens, 2011). The

final dataset was constrained to a sample set with orthogonal

distance <25 and score distance <6.

We first trained SVM regression models with different

algorithms on the calibration data set; and subsequently tested

them on the independent validation set (R package ‘e1071’;

Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2015).

Four kernels (classes of algorithms in SVM) were tested,

including linear, polynomial (second and third degrees), radial

basis, and sigmoid (Karatzoglou, Meyer, & Hornik, 2006).

These kernels were tested in all spectral treatments, and a

common configuration tested in each kernel was that both

spectra (all spectra) and predictor were scaled or not scaled to

zero mean and unit variance prior to calibration (Meyer et al.,

2015). Best models were selected for each variable and treat-

ment (combinations of grinding size, replication method, and

number of analytical replicates) based on sequential criteria

looking first at the lowest root mean squared error (RMSEv),

then greatest residual prediction deviation (RPDv), and then

greatest coefficient of determination (R2
V) of the indepen-

dent validation datasets. The RMSE compute the difference

between observed values and the predicted values. The RPD

is defined as the standard deviation of observed values divided

by the RMSE. The RDP takes both the prediction error and

the variation of observed values into account, providing a

metric of model validity that is more objective for compar-

isons across variables and studies. The R2 provides a measure

of how well observed outcomes are reproduced by the model,

based on the proportion of total variation explained by the

model. The R2 also allow comparison across variables and

studies, but is highly dependent on variable’s range of values.

To compare the prediction outcomes obtained with dif-

ferent numbers of analytical replicates, the measured and

predicted values of the independent validation data-sets were

bootstrapped using the RMSE (RMSEv) function, ordinary

resampling method and 99 replicates (Davison & Hinkley,

1997; R package ‘boot’, Canty, 2017). Multiple means com-

parison was done including both replication methods (Across
and Within, one-to-four analytical replicates) and grinding

sizes (<2.0 mm and <0.5 mm), by the Tukey test (p <. 05)

with estimated marginal means (least-squares means) (R

package ‘emmeans’, Lenth, 2019).

2.7 Data processing and statistical analyses

Data was processed and analyzed in R version 3.3.3 (R

Foundation for Statistical Computing, Vienna, Austria) using

the Ohio Supercomputer Center (OSC, 1987) computing

resources. The specific statistical methods are described

in the Methods sections Spectral quality assessment and

Prediction model calibration and independent validation.

3 RESULTS

The four physiographic regions had distinctive spectral

characteristics, as indicated by the PCA scores dispersion of

the first two principal components (PC1, PC2) in principal

component analysis (NIPALS algorithm) (Supplemental Fig-

ure S1). The permutational multivariate analysis of variance

indicated that this distinction occurred for both grind-

ing sizes and replication methods (<2.0 mm | Across: p <

.001; <2.0 mm | Within: p < .001; <0.5 mm | Across: p < .001;

and <0.5 mm | Within: p <.001). In general, when comparing

the different physiographic regions, Huron-Erie Lake Plains

region had the widest PCA scores dispersion while Glaciated

Allegheny Plateau had a less variable one. Both Unglaciated

Allegheny Plateau and Till Plains had intermediate PCA

scores dispersion when compared to those previous regions.
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F I G U R E 2 Soil grinding and sample replication effects on multivariate scores dispersion of the first two principal components (PC1, PC2) in

the principal component analysis (PCA, NIPALS algorithm) of diffuse reflectance infrared Fourier transform spectra in the mid-infrared region

(mid-DRIFTS) as affected by soil grinding (sieved to <2 mm or ground to <0.5 mm) and spectra replication. Replication of the mid-infrared spectra

was done Across different subsamples or Within a randomly selected subsample. Spectra were averaged from four soil analytical replicates in both

methods of soil replication (Across and Within). Soils were from four physiographic regions of the USA Midwest (total n = 397). The PCA was

separated for each grinding size to evaluate the effect of replication methods, but results were presented in different panels for each replication

method. The first component (PC1) explained 81.5 and 68.9%, and the second component (PC2) 8.32 and 16.6% of the variance in the spectra for

the <2 mm and <0.5 mm grinding sizes, respectively. Spectra were scaled by mean centering prior to PCA. Instrument settings: wavenumber

window 4000–700 cm−1, resolution 4 cm−1, and 24 co-added scans

Following a similar trend, Huron-Erie Lake Plains had the

widest range of TOC and sand contents, while Glaciated

Allegheny Plateau had more constrained ranges for most soil

variables (Table 2).

The PCA scores dispersion (Figure 2; Supplemental Fig-

ure S2) and the loading vectors distribution (Figure 3) were

different for the two grinding sizes (2.0 mm and 0.5 mm), but

these distinctions were not as clear between the replication

methods (Across and Within) (Figure 2) nor for the number

of analytical replicates (Supplemental Figure S2). The

permutational multivariate analysis of variance indicated that

the soil grinding affected PCA scores dispersion (<2.0 mm

vs. <0.5 mm | Across: p <. 001 and <2.0 mm vs. <0.5 mm

| Within: p <. 001), but there was no distinction of PCA

scores dispersion between replication methods into each

grinding size (Across vs. Within | <2.0 mm size: p = 0.79

and Across vs. Within | <0.5 mm: p = 0.99) (Figure 2).

In each grinding size and replication method, there was

no difference in the PCA scores dispersion among the

different number of analytical replicates (for all p > 0.99)

(Supplemental Figure S2).

Following a similar trend of PCA scores dispersion, PCA

loading vectors distribution across the wavenumbers was

more affected by soil grinding than by either replication meth-

ods or number of analytical replicates (Figure 3). In general,

the <2.0 mm samples had a higher diversity of more intense

loadings on the PC1 at the 2000 to 700 cm–1, while the <0.5

mm samples had a similar response in the same region but on

loadings of the PC2. Another expressive distinction between

the two grinding sizes was the intensity of the loadings at

specific wavenumbers. For example, the loadings between

3723 and 3686 cm–1 (wavenumbers attributed to the Si-O

functional group of 2:1 layer alumino-silicates, Nguyen et al.,

1991) were more intense for the <0.5 mm samples when

compared to <2.0 mm samples. These distinctions were not

evident when comparing the methods of replication within

each grinding size nor the number of analytical replicates

into each replication method.

Soil grinding, replication method, and number of analytical

replicates affected the absorbance spectra and its variability

(Figure 4; Supplemental Figure S3). Finely ground soils

(<0.5 mm) had lower averaged absorbance values (aver-

aged over all wavenumbers) than sieved soils (<2.0 mm);

however, averaged absorbance values were less variable

between replication methods or among number of analytical

replicates (Supplemental Figure S3). The spectral variability

(wavenumber-specific standard deviation) was affected by the

tested treatments in terms of the averaged variability (across

all wavenumbers) and intensity of variability in specific

regions of the spectra (Figure 4). The averaged spectral

variability was generally lower for the <0.5 mm samples

than the <2.0 mm samples (within each replication method).

For either grinding size, replication Across wells (different

subsamples) generated more variability when compared to

replication Within a well (same soil subsample). More specifi-

cally, smaller particle size distributions (<0.5 mm) combined
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F I G U R E 3 Loading vectors of the first two principal components (PC1, PC2) of principal component analysis (PCA, NIPALS algorithm) of

diffuse reflectance infrared Fourier transform spectra in the mid-infrared region (mid-DRIFTS) as affected by soil grinding (sieved to <2 mm or

ground to <0.5 mm), and one-to-four analytical replicates Within (same) or Across (different) subsamples. Spectra were averaged from one-to-four

soil analytical replicates in both methods of soil replication (Across and Within). Spectra were scaled by mean centering prior to PCA. Instrument

settings: wavenumber window 4000–700 cm−1, resolution 4 cm−1, and 24 co-added scans

with replication Within the same subsample had lower

spectral variability than the coarser particle sizes (<2.0 mm)

combined with replication Across different subsamples.

The regions at which more variability occurred were

markedly different between the grinding sizes (Figure 4). For

the <2.0 mm samples, there were several regions of high stan-

dard deviations at approximately 1750 to 1250 cm–1, in which

wavenumbers are attributed to carboxyl vibrations of carboxyl

groups, aldehydes, ketones, and esters (Hesse, Meier, & Zeeh,

2005), aromatic C = C stretch and/or asymmetric-COO–

stretch of humic and fulvic acid (Baes & Bloom, 1989), and

symmetric-COO– stretch and/or -CH bending of aliphatics or

fulvic acid. While for the <0.5 mm samples, there was a pro-

nounced increase in the variability at approximately 1250 to

800 cm–1, where wavenumbers are attributed to organic com-

ponents C-O bonds in both polyalcoholic and ether functional

groups (Spaccini & Piccolo, 2007), C-O of polysaccharides

or similar substances (Senesi, D’Orazio, & Ricca, 2003),

and mineral components Si-O of silicate (Senesi et al., 2003)

and carbonates calcite and dolomite (Mirzaeitalarposhti,

Demyan, Rasche, Cadisch, & Müller, 2016).

Increasing the number of analytical replicates (from one-

to-four replicates) increased the averaged spectral variability

in all grinding sizes and replication methods (Figure 4). The

changes in variability as affected by the number of analytical

replicates occurred to a greater extent in the replication

method Across. Additionally, the effect among different

numbers of analytical replicates was greater for the <2.0 mm

samples than <0.5 mm samples, and it was also greater

for the replication method Across when compared to the

replication Within.

Wavenumber importance in the SVM models was specific

for each soil variable, and it was affected by both soil grind-

ing and replication methods (Supplemental Figure S4). This

analysis was specifically done using the spectra averaged

from four analytical replicates. Changes were more apparent

in the comparison between the two grinding sizes, but there

were changes between replication methods mostly for sand

and pH in the <0.5 mm samples.

The described spectral changes impacted the prediction

outcomes from SVM models (Table 3; Figure 5). Changes

in prediction outcomes followed a similar trend to those

described for the spectral changes, as changes were more

evident for the different grinding sizes than either replica-

tion methods or number of analytical replicates. For most

evaluated soil properties (clay, sand, TOC, and POXC),

except pH, soil grinding to <0.5 mm resulted in greater

prediction accuracy than sieving solely to <2.0 mm based on

RMSEV (Tables 3, S1). However, some results obtained with

<2.0 mm were comparable to those obtained with <0.5 mm,
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F I G U R E 4 Diffuse reflectance infrared Fourier transform

absorbance spectra variability in the mid-infrared region (mid-DRIFTS)

as affected by soil grinding (sieved to <2 mm or ground to <0.5 mm),

and one-to-four analytical replicates Within (same) or Across (different)

subsamples. Soils were from four physiographic regions of the USA

Midwest (total n = 397). The different replicate numbers mean that

wavenumber-specific standard deviation was determined from

four-to-two randomly selected analytical replicates for each sample and

then standard deviations were averaged across all samples. Instruments

settings: resolution 4 cm−1 and 24 co-added scans using a 24-well plate

e.g., pH (Across and Within) and POXC (<2.0 mm Across vs.

<0.5 mm Within).

The number of analytical replicates affected the prediction

outcomes, and the responses were specific for the grinding

sizes and replication methods (Table 3; Figure 5; Supple-

mental Table S2). Most soil properties were predicted with

greater accuracy when multiple replicates were used (three

or four replicates) instead of fewer replicates (one or two

replicates) in both sizes (<2.0 mm or <0.5 mm) and methods

of replication (Across and Within).

4 DISCUSSION

Soil particle size homogenization by grinding (<0.5 mm)

affected the mid-DRIFTS predictions of soil properties and

many factors could have contributed to these outcomes.

Differences in particle size are sensed during mid-DRIFTS

measurements, for example by soil-to-detector variability or

eventual specular reflections (Le Guillou et al., 2015), and

minimization of the resulting variability from these factors

(Figures 2, 3, and 4) contributed to the best performance

of SVM modeling of soil variables in the <0.5 mm spectra

(Table 3; Figure 5). The size reduction of both larger primary

particles and aggregates and homogenization in particle size

distributions by finely grinding soils (Stenberg et al., 2010)

help to increase representativeness of soil samples, once soil

particles larger than the beam size could be overestimated

in the spectra of soil samples solely sieved to <2 mm. The

change in original particle size distributions (Stenberg et al.,

2000) does not seem to have degraded prediction perfor-

mance in finely ground soils. Destruction of soil aggregates

by soil grinding to < 0.5 mm could have exposed previously

entrapped organic matter and also individual silt and clay

particles. Moreover, the presence of soil aggregates that

are related to TOC concentrations (Blanco-Canqui & Lal,

2004; Mutuo, Shepherd, Albrecht, & Cadisch, 2006; Verchot,

Dutaur, Shepherd, & Albrecht, 2011) could have contributed

to heterogeneity of the exposed soil surface. Therefore,

predictions could have been negatively affected due to this

variability in <2.0 mm samples. This effect promoted by

aggregates would be more expected in clay-rich soils, where

aggregation of primary particles is stronger than coarser soils.

Finally, surrogate prediction of other soil variables may also

benefit from the particle size homogeneity when prediction

accuracy is maintained or improved. The development of

surrogate calibrations, in which some properties are totally or

partially predicted because of their correlation or covariation

with certain other soil properties, is a well-known topic in

infrared spectroscopy (Chang, Laird, Mausbach, & Hurburgh,

2001; Reeves, 2010; Stenberg et al., 2010).

Besides the effect of soil particle size heterogeneity, the

expected increase in the overall spectra reflectance (i.e.,



DEISS ET AL. 11

T A B L E 3 Model prediction performance of diffuse reflectance infrared Fourier transform spectroscopy in the mid infrared region using sieved

(<2.0 mm) and ground (<0.5 mm) soil, and spectra replicated from the same (Within) or different (Across) soil subsamples. For both replication

methods, spectra were averaged from four analytical replicates. Soils were from four physiographic regions of the U.S. Midwest and each region

comprised one quarter of the total dataset.
a

Grinding
size (<mm)

Spectra
replication Calibration set (75% of dataset) Validation set (25% of dataset)

Soil property RMSE RPD R2 RMSEV RPDV R2
V

Sand (g kg–1) 2 Within 83 2.60 0.89 81 1.78 0.79

(n = 397) Across 80 2.74 0.89 81 1.90 0.80

0.5 Within 54 4.18 0.95 66 2.36 0.87

Across 77 2.89 0.90 58 1.96 0.77

Clay (g kg–1) 2 Within 50 2.87 0.91 33 3.35 0.91

(n = 397) Across 49 3.01 0.91 42 2.47 0.85

0.5 Within 35 4.32 0.95 31 3.49 0.91

Across 32 4.75 0.96 38 2.54 0.84

pH 2 Within 0.43 2.16 0.85 0.40 2.47 0.85

(n = 397) Across 0.40 2.43 0.87 0.41 2.27 0.83

0.5 Within 0.31 3.14 0.92 0.43 2.00 0.81

Across 0.50 1.84 0.80 0.43 2.08 0.81

TOC (%) 2 Within 0.57 1.58 0.78 0.22 3.29 0.90

(n = 397) Across 0.56 1.56 0.78 0.21 3.39 0.93

0.5 Within 0.53 1.79 0.81 0.15 3.78 0.94

Across 0.52 1.83 0.82 0.13 4.75 0.95

POXC (mg kg–1) 2 Within 90 3.14 0.92 78 2.51 0.83

(n = 392) Across 91 2.95 0.92 70 3.31 0.92

0.5 Within 93 3.00 0.91 72 2.87 0.91

Across 91 3.04 0.92 74 2.89 0.91

aRMSE, root mean squared error; RPD, residual prediction deviation; R2, coefficient of determination; TOC, total organic carbon; POXC, permanganate oxidizable carbon.

reduction in absorbance) (Stenberg et al., 2010) resulting

from grinding soils (<0.5 mm) was verified in our study

(Figure 4; Supplemental Figure S4). However, this effect

does not seem to have degraded prediction outcomes from

mid-DRIFTS (Table 3; Figure 5). This increase in reflective-

ness could be happening as an effect of the increase in surface

area of highly reflective materials such as metals/metalloids

and quartz. A preeminent increase in peak sizes attributed to

quartz (∼2080 to 1754 cm–1, Nguyen et al., 1991) can be ver-

ified in the finely ground soils when compared to sieved soils

(Supplemental Figure S4, fourth quartile of sand compar-

ing <0.5 mm and <2.0 mm sample sizes). A similar response

of increased quartz peak sizes in more ground soil samples

(<2.0 mm versus <0.1 mm) was verified by Le Guillou

et al. (2015) in mid-DRIFTS. Working in the near-infrared

region and evaluating the effects of soil texture on DRIFTS

predictions, Stenberg, Jonsson, and Börjesson (2002) verified

that presence of quartz in sandy soils increased light scat-

tering and that was enough to mask absorptions of organic

compounds, and consequently reduce prediction performance

of soil organic matter. However, masking of TOC spectral

features by quartz may depend on TOC soil content (Waruru,

Shepherd, Ndegwa, & Sila, 2016). Similarly, greater reflec-

tiveness/specular reflection of other metals or metalloids as

affected by soil grinding could be speculated based on the

PCA loadings at the wavenumbers attributed to O-H and

Si-O functional groups (3723 to 3565 cm–1) (Figure 3) and

wavenumber-specific standard deviations at the wavenum-

bers attributed to Si-O functional groups (1080 to 950 cm–1).

These functional groups respectively correspond to hydroxyl

stretching (kaolinite and others) (3723 to 3686 cm–1), 2:1

layer alumino-silicate (3686 to 3565 cm–1), and Si-O of

silicates (1080 to 950 cm–1) (Ahlrichs, 1968; Nguyen et al.,

1991; Russell, 1987; Wada & Greenland, 1970). The PCA

loadings (Figure 3) and wavenumber-specific variability

(Figure 4) of these functional groups were more intense in

the <0.5 mm samples when compared to <2.0 mm samples.

The studies reporting the effect of soil grinding over the

prediction outcomes are inconsistent (Table 1), and this

study adds to the broader debate. Moreover, there are no

studies to date that have evaluated the interactive effects

of grinding and analytical replicates in the mid-infrared

region. Making a direct comparison between our results

and those obtained in previous studies in mid-DRIFTS
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F I G U R E 5 Bootstrapped root mean squared error (RMSEV) of independent validation sets as affected by soil grinding (sieved to <2 mm or

ground to <0.5 mm) and one-to-four analytical replicates Within (same) or Across (different) subsamples in diffuse reflectance infrared Fourier

transform spectroscopy in the mid-infrared region (mid-DRIFTS). The different replicates number means that (absorbance) spectra were averaged

from one to four randomly selected analytical replicates (R1 to R4). The means multiple comparison was across grinding sizes and replication

methods. Different letters indicate significant differences by the Tukey test (p < .05). Bards denote standard deviation of means. TOC: Total organic

carbon. POXC: Permanganate oxidizable carbon.

(Table 1) is complex because of differences in experimental

procedures and soil characteristics. These differences include

different grinding sizes and methods to grind soils; sample

pretreatment (e.g., drying temperatures); types of soils,

range of soil properties, and number of soil samples; and

modeling approaches comprising spectral treatments and

multivariate methods. As described earlier, the two grinding

sizes used in our study (<2.0 and <0.5 mm) were primarily

defined based on the results found by Le Guillou et al.

(2015) that although their prediction accuracy improved with

more grinding, they found no differences between <1.0 mm

to <0.25 mm sizes (including <0.5 mm size), and those were

more accurate than <2.0 mm. All the studies (including ours)

compared <2.0 mm samples to finer grinding sizes, and

most studies evaluated finer particle size distributions when

compared to our study (<0.2 mm or <0.1 mm versus 0.5 mm

in our study). Our study included more soil variables, and a

larger (number of samples) and more diverse (in terms of soil

properties range) set of samples than most studies, except for

Janik et al. (2016) that used a larger number of soil samples
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to test for soil texture variables. The modeling approaches

were also different. We developed predictions using SVM

regression models, while all other studies used partial least

squares regression models. In our study, prediction perfor-

mances of SVM models outperformed partial least squares

models for almost all developed predictions (data not shown).

Recommendations on how much grinding is needed

for mid-DRIFTS should also consider the time and effort

required to prepare the soil samples as well as the objective

of the analysis (Le Guillou et al., 2015). For predicting

soil properties where increased accuracy is required, grind-

ing generally reduces error. Grinding soil to <0.5 mm

reduced RMSEV (Within/Across) for sand (23–40%), clay

(6.5–10%), SOC (47–61%), and POXC (8.3%) [Within], but

not for pH and POXC [Across] (Supplemental Table S1).

However, other strategies can reduce errors even further than

the ones obtained in this study. In another study, Deiss et al.

(2020a) found using the same dataset that broadening spectra

resolution up to 32 cm−1 in <2.0 mm samples significantly

reduced the size of errors to a more accurate or similar level

of accuracy as obtained in this study with <0.5 mm samples

and 4 cm−1 resolution. Moreover, Reeves (2010) stated that

multivariate models could at least partially help ameliorate

the problem of poor spectral quality. Strategies such as tuning

SVM regression models can help to improve prediction accu-

racy of soil properties in mid-DRIFTS (Deiss et al., 2020b).

In the present study, our experimental design allowed us

to systematically compare the effect of both particle size and

replication across a suite of soil variables. This contributed to

some of the differences found in our results when compared

to those from other studies (Table 1). For example, Janik

et al. (2016) used a different set of samples for each grinding

size, whereas using the same set of soils for each soil

property would allow a more direct comparison between the

prediction performances. Le Guillou et al. (2015) used the

same spectral treatment for all grinding sizes for development

of their prediction models. As we have shown in our study,

grinding to <0.5 mm fundamentally changes the nature of

the spectral data by decreasing both spectral wavenumber

variability and PCA scores dispersion, changing loading

vectors distribution across the wavenumbers, and leading to a

distinct wavenumber importance allocation in support vector

machine models. This spectral response to soil grinding was

expected (Figures 2, 3, and 4) and consistent with other stud-

ies (e.g., Baldock et al., 2013; Le Guillou et al., 2015; Stumpe

et al., 2011). The final goal of any modeling is to optimize

the prediction power for model use on unknown samples and

our results indicated that different spectral treatments were

selected for the different grinding sizes to generate the most

accurate prediction outcomes. Also, three of the four studies

(Table 1) used cross-validation instead of working with

independent validation sets. The cross-validation likely over-

estimates calibration stability (Stenberg et al., 2010; Stumpe

et al., 2011), and creates uncertainty about the reproducibility

of the developed models for future use in unknown samples.

Evaluating the interactive effects of grinding and ana-

lytical replicates has been done using other regions of the

electromagnetic spectrum. Using near-infrared spectroscopy,

Barthès, Brunet, Ferrer, Chotte, and Feller (2006) evaluated

how the interaction between sample preparation methods

(soil grinding and drying) and number of replicates affect

predictions of total carbon and nitrogen in 123 soil samples

originating from tropical regions of Africa and America.

They obtained better prediction accuracies with more finely

ground soils, but those predictive outcomes were comparable

to results obtained with coarsely ground soils by increasing

the number of analytical replicates (using different soil

subsamples) (Barthès et al., 2006). However, how these

interactive effects of soil grinding and sample replication

would respond in the more sensitive mid-infrared region was

previously unsettled. We verified that increasing the number

of replicates in <2.0 mm samples improved prediction of

clay, sand, pH, and POXC, but the improvement did not equal

the prediction accuracy obtained with < 0.5 mm samples with

comparable sample replication. Mid-infrared spectroscopy

has greater potential to be affected by sample preparation

methods because it has a greater intensity and specificity

of the absorption features when compared to near-infrared

frequencies (Gholizadeh et al., 2013). Moreover, Le Guillou

et al. (2015) suggested that soil grinding has a lesser effect

on vis–NIR spectra because the energy of light in this

region is stronger than mid-IR, and the beam aperture of the

instruments is often larger.

According to literature, increasing the number of analyt-

ical replicates could counteract spectral variability, increase

sample representativeness, and account for differences in

particle size and packing density (e.g., Mirzaeitalarposhti

et al., 2017; Peng et al., 2014; Riedel et al., 2018; Terhoeven-

Urselmans et al., 2010; Zhang et al., 2018). However, as

mentioned earlier, most studies did not explicitly evaluate

how varying numbers of spectral replicates affected spectral

characteristics and prediction performance. Conversely, Peng

et al. (2014) evaluated the effect of number of analytical

replicates in mid-DRIFTS using different subsamples and

found that the prediction performance of TOC and clay

markedly improved from one to three replicates, and there

was no difference then up to ten replicates. However, the

effect of using the same or different soil subsamples to

generate spectral replicates was still not clear. Replicating

spectra in the same soil subsample produced less variable

spectra then among different subsamples because soils are

intrinsically heterogeneous (Figure 4). Inconsistent sample

preparation (e.g., sample loading, packing and leveling)

could add to that variability between different soil subsam-

ples when compared to replicating spectra in the same soil

subsample. However, this reduction in spectral variability
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did not translate in accuracy improvements for most soil

variables. Replicating spectra in Within wells reduced

RMSEV for clay (18%) and POXC (2.7%) with <0.5 mm

samples, and for Clay (21%) and pH (2.4%) with <2 mm sam-

ples (Supplemental Table S2). Even though counter intuitive,

increasing the number of replicates increased the overall

absorbance variability. This possibly occurred because of the

absorbance variability within each wavenumber among spec-

tral replicates of the same soil sample that resulted in greater

averaged variability across all wavenumbers with more spec-

tral replicates, especially when spectra was replicated Across
subsamples. Our results indicate that four spectral replicates

often improve prediction accuracy at either Within or Across
methods of sample replication and that spectra can be repli-

cated in the same subsample instead of different subsamples.

5 CONCLUSION

High-throughput mid-DRIFTS is a valuable technique used

to measure soil properties, but inappropriate methodological

procedures can limit its predictive applications. A better

understanding of how soil grinding and sample analytical

replication can affect spectral properties enables mid-DRIFTS

prediction optimization. Based on our results, finely grinding

samples (<0.5 mm) and acquiring at least four spectral repli-

cates are effective ways to build more accurate models for

mid-DRIFTS predictions of soil variables. Recommendations

on how much grinding is needed and how to replicate spectra

for mid-DRIFTS should consider the tradeoffs between

accuracy required for a specific application and the time and

effort needed to prepare the soil samples as well as equipment

availability. Grinding soils improved prediction accuracy for

most soil variables, but required greater investment in equip-

ment, time, and labor. The predictions with <2.0 mm samples

increased spectral variability and generated greater prediction

uncertainty, though did not jeopardize predictive applications

and enabled greater laboratorial efficiency. Spectra replica-

tion within a single sample was equally as effective as multiple

subsamples and this approach allows reducing the number

of sub-samples to be scanned. Reading a single sample can

be facilitated with autosamplers capable of reading multiple

places within a single sample cup or well. Other factors such

as acquisition parameters and chemometric approaches can

be considered for prediction accuracy optimization. These

recommendations will allow users to further optimize mid-

DRIFTS prediction performance of soil physical, chemical,

and biological variables in a high-throughput framework.
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